Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The R6 package allows the creation of classes with reference semantics, similar to R's built-in reference classes. Compared to reference classes, R6 classes are simpler and lighter-weight, and they are not built on S4 classes so they do not require the methods package. These classes allow public and private members, and they support inheritance, even when the classes are defined in different packages.
JDistlib is the Java Statistical Distribution Library, a Java package that provides routines for various statistical distributions.
This package implements importance sampling from the truncated multivariate normal using the Geweke-Hajivassiliou-Keane (GHK) simulator. Unlike Gibbs sampling which can get stuck in one truncation sub-region depending on initial values, this package allows truncation based on disjoint regions that are created by truncation of absolute values. The GHK algorithm uses simple Cholesky transformation followed by recursive simulation of univariate truncated normals hence there are also no convergence issues. Importance sample is returned along with sampling weights, based on which, one can calculate integrals over truncated regions for multivariate normals.
This package provides methods that simplify the setup of S3 generic functions and S3 methods. Major effort has been made in making definition of methods as simple as possible with a minimum of maintenance for package developers. For example, generic functions are created automatically, if missing, and naming conflict are automatically solved, if possible. The method setMethodS3() is a good start for those who in the future may want to migrate to S4.
The RSP markup language provides a powerful markup for controlling the content and output of LaTeX, HTML, Markdown, AsciiDoc, Sweave and knitr documents (and more), e.g. Today's date is <%=Sys.Date()%>. Contrary to many other literate programming languages, with RSP it is straightforward to loop over mixtures of code and text sections, e.g. in month-by-month summaries. RSP has also several preprocessing directives for incorporating static and dynamic contents of external files (local or online) among other things. RSP is ideal for self-contained scientific reports and R package vignettes.
dcor is distance correlation and energy statistics in Python.
E-statistics are functions of distances between statistical observations in metric spaces. Distance covariance and distance correlation are dependency measures between random vectors introduced in [SRB07] with a simple E-statistic estimator.
This package offers functions for calculating several E-statistics such as:
The package allows one to compose general HTTP requests and provides convenient functions to fetch URIs, GET and POST forms, etc. and process the results returned by the Web server. This provides a great deal of control over the HTTP/FTP/... connection and the form of the request while providing a higher-level interface than is available just using R socket connections. Additionally, the underlying implementation is robust and extensive, supporting FTP/FTPS/TFTP (uploads and downloads), SSL/HTTPS, telnet, dict, ldap, and also supports cookies, redirects, authentication, etc.
Did you ever wish you could make scatter plots with cat shaped points? Now you can!
Roxygen2 is a Doxygen-like in-source documentation system for Rd, collation, and NAMESPACE files.
The snow package provides support for simple parallel computing on a network of workstations using R. A master R process calls makeCluster to start a cluster of worker processes; the master process then uses functions such as clusterCall and clusterApply to execute R code on the worker processes and collect and return the results on the master.
This package provides a resampling-based inference based on data resampling and permutation.
Features:
Bootstrap resampling: ordinary or balanced with optional stratification
Extended bootstrap resampling: also varies sample size
Parametric resampling: Gaussian, Poisson, gamma, etc.)
Jackknife estimates of bias and variance of any estimator
Compute bootstrap confidence intervals (percentile or BCa) for any estimator
Permutation-based variants of traditional statistical tests (USP test of independence and others)
Tools for working with empirical distributions (CDF, quantile, etc.)
R is a language and environment for statistical computing and graphics. It provides a variety of statistical techniques, such as linear and nonlinear modeling, classical statistical tests, time-series analysis, classification and clustering. It also provides robust support for producing publication-quality data plots. A large amount of 3rd-party packages are available, greatly increasing its breadth and scope.
This package provides a tbl_df class that offers better checking and printing capabilities than traditional data frames.
Vega-Altair is a declarative statistical visualization library for Python.
This package provides a small wrapper on regexpr to extract the matches and captured groups from the match of a regular expression to a character vector.
This package provides some basic linear algebra functionality for sparse matrices. It includes Cholesky decomposition and backsolving as well as standard R subsetting and Kronecker products.
This package provides methods for caching or memoization of objects and results. With this package, any R object can be cached in a key-value storage where the key can be an arbitrary set of R objects. The cache memory is persistent (on the file system).
This package finds the k nearest neighbours for every point in a given dataset in O(N log N) time using Arya and Mount's ANN library. Provides approximate, exact searches, fixed radius searches, bd and kb trees.
This package implements different robust clustering algorithms (tclust) based on trimming and including some graphical diagnostic tools (ctlcurves and DiscrFact).
This package provides a fast implementation of Random Forests, particularly suited for high dimensional data. Ensembles of classification, regression, survival and probability prediction trees are supported. Data from genome-wide association studies can be analyzed efficiently.
This package analyzes data with robust methods such as regression methodology including model selections and multivariate statistics.
The trimmed k-means clustering method by Cuesta-Albertos, Gordaliza and Matran (1997). This optimizes the k-means criterion under trimming a portion of the points.
This package provides an integration of Eigen in R using a C++ template library for linear algebra: matrices, vectors, numerical solvers and related algorithms. It supports dense and sparse matrices on integer, floating point and complex numbers, decompositions of such matrices, and solutions of linear systems.
This package provides utility functions useful when programming and developing R packages.