Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides JSON parsing capability through the Rapidjson library.
The mlr3 package family is a set of packages for machine-learning purposes built in a modular fashion. This wrapper package is aimed to simplify the installation and loading of the core mlr3 packages.
This package provides functions for estimating tolerance limits (intervals) for various univariate distributions (binomial, Cauchy, discrete Pareto, exponential, two-parameter exponential, extreme value, hypergeometric, Laplace, logistic, negative binomial, negative hypergeometric, normal, Pareto, Poisson-Lindley, Poisson, uniform, and Zipf-Mandelbrot), Bayesian normal tolerance limits, multivariate normal tolerance regions, nonparametric tolerance intervals, tolerance bands for regression settings (linear regression, nonlinear regression, nonparametric regression, and multivariate regression), and analysis of variance tolerance intervals. Visualizations are also available for most of these settings.
This package lets you construct Clinical Data Interchange Standards Consortium (CDISC) compliant Analysis Results Data objects. These objects are used and re-used to construct summary tables, visualizations, and written reports. The package also exports utilities for working with these objects and creating new Analysis Results Data objects.
This package provides for uniform handling of R's different time-based data classes by extending zoo, maximizing native format information preservation and allowing for user-level customization and extension, while simplifying cross-class interoperability.
This package provides C code used by the wmtsa, fractal, and sapa R packages.
This package provides meta-analysis methods that correct for publication bias and outcome reporting bias. Four methods and a visual tool are currently included in the package.
The p-uniform method as described in van Assen, van Aert, and Wicherts (2015) doi:10.1037/met0000025 can be used for estimating the average effect size, testing the null hypothesis of no effect, and testing for publication bias using only the statistically significant effect sizes of primary studies.
The p-uniform* method as described in van Aert and van Assen (2019) doi:10.31222/osf.io/zqjr9. This method is an extension of the p-uniform method that allows for estimation of the average effect size and the between-study variance in a meta-analysis, and uses both the statistically significant and nonsignificant effect sizes.
The hybrid method as described in van Aert and van Assen (2017) doi:10.3758/s13428-017-0967-6. The hybrid method is a meta-analysis method for combining an original study and replication and while taking into account statistical significance of the original study. The p-uniform and hybrid method are based on the statistical theory that the distribution of p-values is uniform conditional on the population effect size.
The fourth method in the package is the Snapshot Bayesian Hybrid Meta-Analysis Method as described in van Aert and van Assen (2018) doi:10.1371/journal.pone.0175302. This method computes posterior probabilities for four true effect sizes (no, small, medium, and large) based on an original study and replication while taking into account publication bias in the original study. The method can also be used for computing the required sample size of the replication akin to power analysis in null hypothesis significance testing.
The meta-plot is a visual tool for meta-analysis that provides information on the primary studies in the meta-analysis, the results of the meta-analysis, and characteristics of the research on the effect under study (van Assen and others, 2020).
Helper functions to apply the Correcting for Outcome Reporting Bias (CORB) method to correct for outcome reporting bias in a meta-analysis (van Aert & Wicherts, 2020).
This package provides functions for creating plots and image files in a unified way regardless of output format (EPS, PDF, PNG, SVG, TIFF, WMF, etc.). Default device options as well as scales and aspect ratios are controlled in a uniform way across all device types. Switching output format requires minimal changes in code. This package is ideal for large-scale batch processing, because it will never leave open graphics devices or incomplete image files behind, even on errors or user interrupts.
This package provides tools for multiple imputation of missing data in multilevel modeling. It includes a user-friendly interface to the packages pan and jomo, and several functions for visualization, data management and the analysis of multiply imputed data sets.
This package contains functions to estimate L-moments and trimmed L-moments from the data. It also contains functions to estimate the parameters of the normal polynomial quantile mixture and the Cauchy polynomial quantile mixture from L-moments and trimmed L-moments.
This package lets you construct paths to your project's files. Use the here function as a drop-in replacement for file.path, it will always locate the files relative to your project root.
This package enables variogram modelling, including: simple, ordinary and universal point or block (co)kriging; spatio-temporal kriging; and sequential Gaussian or indicator (co)simulation. It includes variogram and variogram map plotting utility functions, and supports sf and stars.
Provide nonparametric methods for mean regression model, modal regression and conditional density estimation in the presence/absence of measurement error. Bandwidth selection is also provided for each method.
This is a package for estimation of a sparse inverse covariance matrix using a lasso (L1) penalty. Facilities are provided for estimates along a path of values for the regularization parameter.
Makes it incredibly easy to build interactive web applications with R. Automatic "reactive" binding between inputs and outputs and extensive prebuilt widgets make it possible to build beautiful, responsive, and powerful applications with minimal effort.
Parametric time warping aligns patterns. It aims to put corresponding features at the same locations. The algorithm searches for an optimal polynomial describing the warping. It is possible to align one sample to a reference, several samples to the same reference, or several samples to several references. One can choose between calculating individual warpings, or one global warping for a set of samples and one reference. Two optimization criteria are implemented: RMS error and WCC. Both warping of peak profiles and of peak lists are supported.
This package provides visualization techniques, data sets, summary and inference procedures aimed particularly at categorical data. Special emphasis is given to highly extensible grid graphics. The package was originally inspired by the book "Visualizing Categorical Data" by Michael Friendly and is now the main support package for a new book, "Discrete Data Analysis with R" by Michael Friendly and David Meyer (2015).
This package provides functions for latent class analysis, short time Fourier transform, fuzzy clustering, support vector machines, shortest path computation, bagged clustering, naive Bayes classifier, and more.
The nls.lm function provides an R interface to lmder and lmdif from the MINPACK library, for solving nonlinear least-squares problems by a modification of the Levenberg-Marquardt algorithm, with support for lower and upper parameter bounds. The implementation can be used via nls-like calls using the nlsLM function.
This package provides a set of functions for sparse matrix algebra. Differences with other sparse matrix packages are:
it only supports (essentially) one sparse matrix format;
it is based on transparent and simple structure(s);
it is tailored for MCMC calculations within G(M)RF;
and it is fast and scalable (with the extension package
spam64).
This package computes fast (relative to other implementations) approximate Shapley values for any supervised learning model. Shapley values help to explain the predictions from any black box model using ideas from game theory; see doi.org/10.1007/s10115-013-0679-x for details.
This package provides a comprehensive library for date-time manipulations using a new family of orthogonal date-time classes (durations, time points, zoned-times, and calendars) that partition responsibilities so that the complexities of time zones are only considered when they are really needed. Capabilities include: date-time parsing, formatting, arithmetic, extraction and updating of components, and rounding.
The ggcorrplot package can be used to visualize easily a correlation matrix using ggplot2. It provides a solution for reordering the correlation matrix and displays the significance level on the plot. It also includes a function for computing a matrix of correlation p-values.
This package provides a simple method for representing a visual scene as it may be seen by an animal with less acute vision.