Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides methods for spatial data analysis, especially raster data. The included methods allow for low-level data manipulation as well as high-level global, local, zonal, and focal computation. The predict and interpolate methods facilitate the use of regression type (interpolation, machine learning) models for spatial prediction. Processing of very large files is supported.
These utilities facilitate the programmatic manipulations of formulas, expressions, calls, assignments and other R language objects. These objects all share the same structure: a left-hand side, operator and right-hand side. This package provides methods for accessing and modifying this structures as well as extracting and replacing names and symbols from these objects.
This package provides an interface from R to Python modules, classes, and functions. When calling into Python, R data types are automatically converted to their equivalent Python types. When values are returned from Python to R they are converted back to R types.
This package provides tools for fitting possibly high dimensional penalized regression models. The penalty structure can be any combination of an L1 penalty (lasso and fused lasso), an L2 penalty (ridge) and a positivity constraint on the regression coefficients. The supported regression models are linear, logistic and Poisson regression and the Cox Proportional Hazards model. Cross-validation routines allow optimization of the tuning parameters.
This package provides a way to read, write and display bitmap images stored in the JPEG format with R. It can read and write both files and in-memory raw vectors.
The Rmisc library contains functions for data analysis and utility operations.
This package provides a collection of utilities that allow programming with R's operators. Routines allow classifying operators, translating to and from an operator and its underlying function, and inverting some operators (e.g. comparison operators), etc. All methods can be extended to custom infix operators.
This package provides a suite of flexible and versatile model fitting and after-fitting functions for the analysis of dose-response data.
This package provides tools to fit and compare Ornstein-Uhlenbeck models for evolution along a phylogenetic tree.
This package provides utilities for secure password hashing via the argon2 algorithm.
Zoltar is a website that provides a repository of model forecast results in a standardized format and a central location. It supports storing, retrieving, comparing, and analyzing time series forecasts for prediction challenges of interest to the modeling community. This package provides functions for working with the Zoltar API, including connecting and authenticating, getting information about projects, models, and forecasts, deleting and uploading forecast data, and downloading scores.
The glmnet package provides efficient procedures for fitting the entire lasso or elastic-net regularization path for linear and Poisson regression, as well as logistic, multinomial, Cox, multiple-response Gaussian and grouped multinomial models. The algorithm uses cyclical coordinate descent in a path-wise fashion.
This package provides tools to check the latest release version of R and R packages (on CRAN, Bioconductor or Github).
This package provides an arsenal of R functions for large-scale statistical summaries, which are streamlined to work within the latest reporting tools in R and RStudio and which use formulas and versatile summary statistics for summary tables and models. The primary functions include
tableby, a Table-1-like summary of multiple variable types by the levels of one or more categorical variables;paired, a Table-1-like summary of multiple variable types paired across two time points;modelsum, which performs simple model fits on one or more endpoints for many variables (univariate or adjusted for covariates);freqlist, a powerful frequency table across many categorical variables;comparedf, a function for comparingdata.frames; andwrite2, a function to output tables to a document.
This package provides tools to compute Gower's distance (or similarity) coefficient between records, and to compute the top-n matches between records. Core algorithms are executed in parallel on systems supporting OpenMP.
This package exposes R bindings to jsTree, a JavaScript library that supports interactive trees, to enable rich, editable trees in Shiny.
This package provides ACE and AVAS methods for choosing regression transformations.
This package provides tools to estimate tail area-based false discovery rates as well as local false discovery rates for a variety of null models (p-values, z-scores, correlation coefficients, t-scores). The proportion of null values and the parameters of the null distribution are adaptively estimated from the data. In addition, the package contains functions for non-parametric density estimation (Grenander estimator), for monotone regression (isotonic regression and antitonic regression with weights), for computing the greatest convex minorant (GCM) and the least concave majorant (LCM), for the half-normal and correlation distributions, and for computing empirical higher criticism (HC) scores and the corresponding decision threshold.
This package provides tools that allow you to recreate the parsing, evaluation and display of R code, with enough information that you can accurately recreate what happens at the command line. The tools can easily be adapted for other output formats, such as HTML or LaTeX.
This package provides an improved implementation (based on k-nearest neighbors) of the density peak clustering algorithm, originally described by Alex Rodriguez and Alessandro Laio (Science, 2014 vol. 344). It can handle large datasets (> 100,000 samples) very efficiently.
This package provides functions to calculate: moments, Pearson's kurtosis, Geary's kurtosis and skewness; it also includes tests related to them (Anscombe-Glynn, D'Agostino, Bonett-Seier).
Postprocessors refine predictions outputted from machine learning models to improve predictive performance or better satisfy distributional limitations. This package introduces tailor objects, which compose iterative adjustments to model predictions. A number of pre-written adjustments are provided with the package, such as calibration. See Lichtenstein, Fischhoff, and Phillips (1977) <doi:10.1007/978-94-010-1276-8_19>. Other methods and utilities to compose new adjustments are also included. Tailors are tightly integrated with the tidymodels framework.
The tidy modeling "verse" is a collection of packages for modeling and statistical analysis that share the underlying design philosophy, grammar, and data structures of the tidyverse.
Dunn's test computes stochastic dominance & reports pairwise comparisons. This is done following a Kruskal-Wallis test (Kruskal and Wallis, 1952). It employs Dunn's z-test-statistic approximations for rank statistics, conducting k(k-1)/2 comparisons. The null hypothesis assumes that the probability of a randomly selected value from the first group being larger than one from the second group is one half, similar to the Wilcoxon-Mann-Whitney test. Dunn's test serves as a test for median difference and takes into account tied ranks.