Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Designed to enable simultaneous substitution in strings in a safe fashion. Safe means it does not rely on placeholders (which can cause errors in same length matches).
This package provides tools for the statistical modelling of spatial extremes using max-stable processes, copula or Bayesian hierarchical models. More precisely, this package allows (conditional) simulations from various parametric max-stable models, analysis of the extremal spatial dependence, the fitting of such processes using composite likelihoods or least square (simple max-stable processes only), model checking and selection and prediction.
This package provides syntax highlighting for R source code. Currently it supports LaTeX and HTML output. Source code of other languages is supported via Andre Simon's highlight package.
This package provides support for simple features, a standardized way to encode spatial vector data. It binds to GDAL for reading and writing data, to GEOS for geometrical operations, and to PROJ for projection conversions and datum transformations.
This package provides an R interface to the dygraphs JavaScript charting library (a copy of which is included in the package). It provides rich facilities for charting time-series data in R, including highly configurable series- and axis-display and interactive features like zoom/pan and series/point highlighting.
This is a package for mixture and flexible discriminant analysis, multivariate adaptive regression splines (MARS), BRUTO, and so on.
This package provides a library for rolling windows operations. The package enables full control over the window length, window lag, and time indices. With a runner one can apply any R function on rolling windows. The package eases work with equally and unequally spaced time series.
This package provides alternative implementations of some base R functions, including sort, order, and match. The functions are simplified but can be faster or have other advantages.
The main aim of the pander R package is to provide a minimal and easy tool for rendering R objects into Pandoc's markdown. The package is also capable of exporting/converting complex Pandoc documents (reports) in various ways.
This package is a collection of tools to load R packages and automatically generate BibTeX files citing them as well as load and cache plain-text and Excel formatted data stored on GitHub, and from other sources.
This package provides a wrapper for several FFTW functions. It provides access to the two-dimensional FFT, the multivariate FFT, and the one-dimensional real to complex FFT using the FFTW3 library. The package includes the functions fftw() and mvfftw() which are designed to mimic the functionality of the R functions fft() and mvfft(). The FFT functions have a parameter that allows them to not return the redundant complex conjugate when the input is real data.
This package provides density, distribution, quantile and hazard functions of a stable variate, as well as generalized regression models for the parameters of a stable distribution.
This package provides various themes, palettes, and other functions that are used to customise ggplots to look like they were made in GraphPad Prism. The Prism-look is achieved with theme_prism() and scale_fill|colour_prism(), axes can be changed with custom guides like guide_prism_minor(), and significance indicators added with add_pvalue().
This package provides resampling procedures to assess the stability of selected variables with additional finite sample error control for high-dimensional variable selection procedures such as Lasso or boosting. Both, standard stability selection (Meinshausen & Buhlmann, 2010) and complementary pairs stability selection with improved error bounds (Shah & Samworth, 2013) are implemented. The package can be combined with arbitrary user specified variable selection approaches.
This package adds distinctive yet unobtrusive geometric patterns where solid color fills are normally used. Patterned figures look just as professional when viewed by colorblind readers or when printed in black and white. The dozen included patterns can be customized in terms of scale, rotation, color, fill, line type, and line width. It is compatible with the ggplot2 package as well as grid graphics.
Read and write feather files, a lightweight binary columnar data store designed for maximum speed.
This package includes tools for marginal maximum likelihood estimation and joint maximum likelihood estimation for unidimensional and multidimensional item response models. The package functionality covers the Rasch model, 2PL model, 3PL model, generalized partial credit model, multi-faceted Rasch model, nominal item response model, structured latent class model, mixture distribution IRT models, and located latent class models. Latent regression models and plausible value imputation are also supported.
This is a collection of tools for assessment of feature importance and feature effects. Key functions are:
feature_importance()for assessment of global level feature importance,ceteris_paribus()for calculation of the what-if plots,partial_dependence()for partial dependence plots,conditional_dependence()for conditional dependence plots,accumulated_dependence()for accumulated local effects plots,aggregate_profiles()andcluster_profiles()for aggregation of ceteris paribus profiles,generic
print()andplot()for better usability of selected explainers,generic
plotD3()for interactive, D3 based explanations, andgeneric
describe()for explanations in natural language.
This package provides cross-platform utilities for prompting the user for credentials or a passphrase, for example to authenticate with a server or read a protected key.
This lightweight package that adds progress bar to vectorized R functions apply. The implementation can easily be added to functions where showing the progress is useful e.g. bootstrap.
This package implements a generalized version of principal components analysis (GLM-PCA) for dimension reduction of non-normally distributed data such as counts or binary matrices.
Stringr is a consistent, simple and easy to use set of wrappers around the fantastic stringi package. All function and argument names (and positions) are consistent, all functions deal with "NA"'s and zero length vectors in the same way, and the output from one function is easy to feed into the input of another.
This package provides a non-linear model, termed ACME, that reflects a parsimonious biological model for allelic contributions of cis-acting eQTLs. With non-linear least-squares algorithm the maximum likelihood parameters can be estimated. The ACME model provides interpretable effect size estimates and p-values with well controlled Type-I error.
This package lets you assign, extract, or remove variable labels from R vectors.