Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for analysing, manipulating, displaying, editing and synthesizing time waves (particularly sound). This package processes time analysis (oscillograms and envelopes), spectral content, resonance quality factor, entropy, cross correlation and autocorrelation, zero-crossing, dominant frequency, analytic signal, frequency coherence, 2D and 3D spectrograms and many other analyses.
This package provides a collection of high-performance utilities. It can be used to compute distances, correlations, autocorrelations, clustering, and other tasks. It also contains a graph clustering algorithm described in MetaCell analysis of single-cell RNA-seq data using K-nn graph partitions.
Imports plain-text ASC data files from EyeLink eye trackers into (relatively) tidy data frames for analysis and visualization.
This package estimates optimal cutpoints for binary classification metrics. It also validates performance using bootstrapping. Some methods for more robust cutpoint estimation are supported, e.g. a parametric method assuming normal distributions, bootstrapped cutpoints, and smoothing of the metric values per cutpoint using Generalized Additive Models. Various plotting functions are included.
Group-Lasso INTERaction-NET. Fits linear pairwise-interaction models that satisfy strong hierarchy: if an interaction coefficient is estimated to be nonzero, then its two associated main effects also have nonzero estimated coefficients. Accommodates categorical variables (factors) with arbitrary numbers of levels, continuous variables, and combinations thereof. Implements the machinery described in the paper "Learning interactions via hierarchical group-lasso regularization" (JCGS 2015, Volume 24, Issue 3). Michael Lim & Trevor Hastie (2015)
This package provides functions for extracting feature contributions from a random forest model from package randomForest. Feature contributions provide detailed information about the relationship between data variables and the predicted value returned by random forest model.
This package provides five omnibus tests for testing the composite hypothesis of normality.
This package provides routines for the analysis of indirectly measured haplotypes. The statistical methods assume that all subjects are unrelated and that haplotypes are ambiguous (due to unknown linkage phase of the genetic markers). The main functions are: haplo.em(), haplo.glm(), haplo.score(), and haplo.power(); all of which have detailed examples in the vignette.
Hapassoc performs likelihood inference of trait associations with haplotypes and other covariates in generalized linear models (GLMs). The functions are developed primarily for data collected in cohort or cross-sectional studies. They can accommodate uncertain haplotype phase and handle missing genotypes at some SNPs.
This package is designed to be used with Rscript to write shebang scripts that accept short and long options. Many users will prefer to use the packages optparse or argparse which add extra features like automatically generated help options and usage texts, support for default values, positional argument support, etc.
This package provides an interface to a large number of classification and regression techniques. These techniques include machine-readable parameter descriptions. There is also an experimental extension for survival analysis, clustering and general, example-specific cost-sensitive learning. Also included:
Generic resampling, including cross-validation, bootstrapping and subsampling;
Hyperparameter tuning with modern optimization techniques, for single- and multi-objective problems;
Filter and wrapper methods for feature selection;
Extension of basic learners with additional operations common in machine learning, also allowing for easy nested resampling.
Most operations can be parallelized.
This package provides a multi-modal simulation engine for studying dynamic cellular processes at single-cell resolution.
This package provides smooth additive quantile regression models, fitted using the methods of Fasiolo et al. (2017). Differently from quantreg, the smoothing parameters are estimated automatically by marginal loss minimization, while the regression coefficients are estimated using either PIRLS or Newton algorithm. The learning rate is determined so that the Bayesian credible intervals of the estimated effects have approximately the correct coverage. The main function is qgam() which is similar to gam() in the mgcv package, but fits non-parametric quantile regression models.
This package contains a collection of various functions to assist in R programming, such as tools to assist in developing, updating, and maintaining R and R packages, calculating the logit and inverse logit transformations, tests for whether a value is missing, empty or contains only NA and NULL values, and many more.
This is a C/C++ based package for advanced data transformation and statistical computing in R that is extremely fast, class-agnostic, robust and programmer friendly. Core functionality includes a rich set of S3 generic grouped and weighted statistical functions for vectors, matrices and data frames, which provide efficient low-level vectorizations, OpenMP multithreading, and skip missing values by default. These are integrated with fast grouping and ordering algorithms (also callable from C), and efficient data manipulation functions. The package also provides a flexible and rigorous approach to time series and panel data in R. It further includes fast functions for common statistical procedures, detailed (grouped, weighted) summary statistics, powerful tools to work with nested data, fast data object conversions, functions for memory efficient R programming, and helpers to effectively deal with variable labels, attributes, and missing data.
This package implements Freund and Schapire's Adaboost.M1 algorithm and Breiman's Bagging algorithm using classification trees as individual classifiers. Once these classifiers have been trained, they can be used to predict on new data. Also, cross validation estimation of the error can be done.
This R package downloads labeled single-cell RNA-seq data from PanglaoDB. It merges the data into a Seurat object for streamlined analysis.
This package provides tools to combine multidimensional arrays into a single array. This is a generalization of cbind and rbind. It works with vectors, matrices, and higher-dimensional arrays. It also provides the functions adrop, asub, and afill for manipulating, extracting and replacing data in arrays.
This package provides advanced tryCatch and try functions for better error handling (logging, stack trace with source code references and support for post-mortem analysis via dump files).
This package provides tools for creating detailed dataframes for common statistical approaches and tests. These include parametric, nonparametric, robust, and Bayesian t-test, one-way ANOVA, correlation analyses, contingency table analyses, and meta-analyses. The functions are pipe-friendly and provide a consistent syntax to work with tidy data. These dataframes additionally contain expressions with statistical details, and can be used in graphing packages. This package also forms the statistical processing backend for ggstatsplot.
This r-abctools package provides tools for approximate Bayesian computation including summary statistic selection and assessing coverage. This includes recent dimension reduction algorithms to tune the choice of summary statistics, and coverage methods to tune the choice of threshold.
This package provides three functions for dealing with dates: parse_iso_8601 recognizes and parses all valid ISO 8601 date and time formats, parse_date parses dates in unspecified formats, and format_iso_8601 formats a date in ISO 8601 format.
The package provides estimators of the mode of univariate unimodal (and sometimes multimodal) data and values of the modes of usual probability distributions.
This package provides methods for fast access to large ASCII files. Currently the following file formats are supported: comma separated format (CSV) and fixed width format. It is assumed that the files are too large to fit into memory, although the package can also be used to efficiently access files that do fit into memory. Methods are provided to access and process files blockwise. Furthermore, an opened file can be accessed as one would an ordinary data.frame. The LaF vignette gives an overview of the functionality provided.