Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides an environment for teaching "Financial Engineering and Computational Finance" and for managing chronological and calendar objects.
This package implements tools for manipulation of digital images and the Propagation Separation approach by Polzehl and Spokoiny (2006) <DOI:10.1007/s00440-005-0464-1> for smoothing digital images, see Polzehl and Tabelow (2007) <DOI:10.18637/jss.v019.i01>.
This package provides implementations of the family of map() functions from the purrr package that can be resolved using any future-supported backend, e.g. parallel on the local machine or distributed on a compute cluster.
This package provides a collection of all the estimation functions for spatial cross-sectional models (on lattice/areal data using spatial weights matrices) contained up to now in spdep.
This package implements multitaper spectral estimation techniques using prolate spheroidal sequences (Slepians) and sine tapers for time series analysis. It includes an adaptive weighted multitaper spectral estimate, a coherence estimate, Thomson's Harmonic F-test, and complex demodulation. The Slepians sequences are generated efficiently using a tridiagonal matrix solution, and jackknifed confidence intervals are available for most estimates.
This package provides fast machine learning algorithms including matrix factorization and divisive clustering for large sparse and dense matrices.
Calculate generalized R-squared, partial R-squared, and partial correlation coefficients for generalized linear (mixed) models (including quasi models with well defined variance functions).
This package assists you in setting up and retrieving of HTTPS and SSH credentials for use with git and other services. For HTTPS remotes the package interfaces the git-credential utility which git uses to store HTTP usernames and passwords. For SSH remotes this package provides convenient functions to find or generate appropriate SSH keys. The package both helps the user to setup a local git installation, and also provides a back-end for git/ssh client libraries to authenticate with existing user credentials.
This package provides an interface to Amazon Web Services security, identity, and compliance services, including the Identity and Access Management (IAM) service for managing access to services and resources, and more.
This package provides the exponential integrals E_1(x), E_2(x), E_n(x) and Ei(x), and the incomplete gamma function G(a, x) defined for negative values of its first argument. The package also gives easy access to the underlying C routines through an API; see the package vignette for details.
Functions to help implement the extraction / subsetting / indexing function [ and replacement function [<- of custom matrix-like types (based on S3, S4, etc.), modeled as closely to the base matrix class as possible (with tests to prove it).
This package provides pure C++ implementations for reading and writing several common data formats based on Google protocol-buffers. It currently supports rexp.proto for serialized R objects, geobuf.proto for binary geojson, and mvt.proto for vector tiles. This package uses the auto-generated C++ code by protobuf-compiler, hence the entire serialization is optimized at compile time. The RProtoBuf package on the other hand uses the protobuf runtime library to provide a general-purpose toolkit for reading and writing arbitrary protocol-buffer data in R.
This package provides a scripting and command-line front-end is provided by r (aka littler) as a lightweight binary wrapper around the GNU R language and environment for statistical computing and graphics. While R can be used in batch mode, the r binary adds full support for both shebang-style scripting (i.e. using a hash-mark-exclamation-path expression as the first line in scripts) as well as command-line use in standard pipelines. In other words, r provides the R language without the environment.
This package offers methods to perform asymptotically bias-corrected regularized linear discriminant analysis (ABC_RLDA) for cost-sensitive binary classification. The bias-correction is an estimate of the bias term added to regularized discriminant analysis that minimizes the overall risk.
The ggplot2 package is an excellent and flexible package for elegant data visualization in R. However the default generated plots require some formatting before we can send them for publication. The ggpubr package provides some easy-to-use functions for creating and customizing ggplot2-based publication-ready plots.
Set of tools for reading and processing spatial data. The aim is to supply the workflow to create thematic maps. This package also facilitates tmap, the package for visualizing thematic maps.
This package combines a forecast of a time series, using the function forecast, with the dynamic plots from dygraphs.
This package provides an R wrapper to the Python natural language processing (NLP) library spaCy, from http://spacy.io.
This package provides functions to handle basic input output. These functions always read and write UTF-8 (8-bit Unicode Transformation Format) files and provide more explicit control over line endings.
This package provides an R interface to the jExcel library to create web-based interactive tables and spreadsheets compatible with spreadsheet software.
This package was designed to find an acceptable Python binary that matches version and feature constraints.
This package provides tools for the estimation of indicators on social exclusion and poverty, as well as an implementation of Pareto tail modeling for empirical income distributions.
This package provides an R interface to the Spectra library for large-scale eigenvalue and SVD problems. It is typically used to compute a few eigenvalues/vectors of an n by n matrix, e.g., the k largest eigenvalues, which is usually more efficient than eigen() if k << n.
This package implements an approximate string matching version of R's native match function. It can calculate various string distances based on edits (Damerau-Levenshtein, Hamming, Levenshtein, optimal string alignment), qgrams (q- gram, cosine, jaccard distance) or heuristic metrics (Jaro, Jaro-Winkler). An implementation of soundex is provided as well. Distances can be computed between character vectors while taking proper care of encoding or between integer vectors representing generic sequences.