Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The NGS (Next-Generation Sequencing) reads from FFPE (Formalin-Fixed Paraffin-Embedded) samples contain numerous artifact chimeric reads (ACRS), which can lead to false positive structural variant calls. These ACRs are derived from the combination of two single-stranded DNA (ss-DNA) fragments with short reverse complementary regions (SRCRs). This package simulates these artifact chimeric reads as well as normal reads for FFPE samples on the whole genome / several chromosomes / large regions.
This data package contains the code used to analyse the single-cell RNA-seq and the bulk ATAC-seq data from the manuscript titled: Single-cell transcriptome analysis reveals coordinated ectopic-gene expression patterns in medullary thymic epithelial cells. This paper was published in Nature Immunology 16,933-941(2015). The data objects provided in this package has been pre-processed: the raw data files can be downloaded from ArrayExpress under the accession identifiers E-MTAB-3346 and E-MTAB-3624. The vignette of this data package provides a documented and reproducible workflow that includes the code that was used to generate each statistic and figure from the manuscript.
The package disseminates mass spectrometry (MS)-based single-cell proteomics (SCP) datasets. The data were collected from published work and formatted using the `scp` data structure. The data sets contain quantitative information at spectrum, peptide and/or protein level for single cells or minute sample amounts.
svaNUMT contains functions for detecting NUMT events from structural variant calls. It takes structural variant calls in GRanges of breakend notation and identifies NUMTs by nuclear-mitochondrial breakend junctions. The main function reports candidate NUMTs if there is a pair of valid insertion sites found on the nuclear genome within a certain distance threshold. The candidate NUMTs are reported by events.
scBubbletree is a quantitative method for the visual exploration of scRNA-seq data, preserving key biological properties such as local and global cell distances and cell density distributions across samples. It effectively resolves overplotting and enables the visualization of diverse cell attributes from multiomic single-cell experiments. Additionally, scBubbletree is user-friendly and integrates seamlessly with popular scRNA-seq analysis tools, facilitating comprehensive and intuitive data interpretation.
This package provides methods for measuring the strength of association between a network and a phenotype. It does this by measuring clustering of the phenotype across the network (Knet). Vertices can also be individually ranked by their strength of association with high-weight vertices (Knode).
slalom is a scalable modelling framework for single-cell RNA-seq data that uses gene set annotations to dissect single-cell transcriptome heterogeneity, thereby allowing to identify biological drivers of cell-to-cell variability and model confounding factors. The method uses Bayesian factor analysis with a latent variable model to identify active pathways (selected by the user, e.g. KEGG pathways) that explain variation in a single-cell RNA-seq dataset. This an R/C++ implementation of the f-scLVM Python package. See the publication describing the method at https://doi.org/10.1186/s13059-017-1334-8.
srnadiff is a package that finds differently expressed regions from RNA-seq data at base-resolution level without relying on existing annotation. To do so, the package implements the identify-then-annotate methodology that builds on the idea of combining two pipelines approachs differential expressed regions detection and differential expression quantification. It reads BAM files as input, and outputs a list differentially regions, together with the adjusted p-values.
The algorithm is based on the non-negative tucker decomposition (NTD2) of nnTensor.
The spicyR package provides a framework for performing inference on changes in spatial relationships between pairs of cell types for cell-resolution spatial omics technologies. spicyR consists of three primary steps: (i) summarizing the degree of spatial localization between pairs of cell types for each image; (ii) modelling the variability in localization summary statistics as a function of cell counts and (iii) testing for changes in spatial localizations associated with a response variable.
scoreInvHap can get the samples inversion status of known inversions. scoreInvHap uses SNP data as input and requires the following information about the inversion: genotype frequencies in the different haplotypes, R2 between the region SNPs and inversion status and heterozygote genotypes in the reference. The package include this data for 21 inversions.
scTreeViz provides classes to support interactive data aggregation and visualization of single cell RNA-seq datasets with hierarchies for e.g. cell clusters at different resolutions. The `TreeIndex` class provides methods to manage hierarchy and split the tree at a given resolution or across resolutions. The `TreeViz` class extends `SummarizedExperiment` and can performs quick aggregations on the count matrix defined by clusters.
Statistics implemented for both peak-wise and gene-wise associations. In peak-wise associations, the p-value of the target genes of a given set of peaks are calculated. Negative binomial or Poisson distributions can be used for modeling the unweighted peaks targets and log-nromal can be used to model the weighted peaks. In gene-wise associations a table consisting of a set of genes, mapped to specific peaks, is generated using the given rules.
Spatial transcriptomic technologies have helped to resolve the connection between gene expression and the 2D orientation of tissues relative to each other. However, the limited single-cell resolution makes it difficult to highlight the most important molecular interactions in these tissues. SpaceMarkers, R/Bioconductor software, can help to find molecular interactions, by identifying genes associated with latent space interactions in spatial transcriptomics.
This package provides a package containing an environment representing the Soybean.cdf file.
Read in imaging-based spatial transcriptomics technology data. Current available modules are for Xenium by 10X Genomics, CosMx by Nanostring, MERSCOPE by Vizgen, or STARmapPLUS from Broad Institute. You can choose to read the data in as a SpatialExperiment or a SingleCellExperiment object.
SpotClean is a computational method to adjust for spot swapping in spatial transcriptomics data. Recent spatial transcriptomics experiments utilize slides containing thousands of spots with spot-specific barcodes that bind mRNA. Ideally, unique molecular identifiers at a spot measure spot-specific expression, but this is often not the case due to bleed from nearby spots, an artifact we refer to as spot swapping. SpotClean is able to estimate the contamination rate in observed data and decontaminate the spot swapping effect, thus increase the sensitivity and precision of downstream analyses.
This package provides a pipeline for analysis of GC-MS data acquired in selected ion monitoring (SIM) mode. The tool also provides a guidance in choosing appropriate fragments for the targets of interest by using an optimization algorithm. This is done by considering overlapping peaks from a provided library by the user.
This Data package contains data objcets relevanat for the SingleMoleculeFootprinting package. More specifically, it contains one example of aligned sequencing data (.bam & .bai) necessary to run the SingleMoleculeFootprinting vignette. Additionally, we provide data that are essential for some functions to work correctly such as BaitCapture() and SampleCorrelation().
This package provides functions for computing and displaying sample size information for gene expression arrays.
Defines a S4 class that is based on SingleCellExperiment. In addition to the usual gene layer the object can also store data for immune genes such as HLAs, Igs and KIRs at allele and functional level. The package is part of a workflow named single-cell ImmunoGenomic Diversity (scIGD), that firstly incorporates allele-aware quantification data for immune genes. This new data can then be used with the here implemented data structure and functionalities for further data handling and data analysis.
This package provides a toolbox for sparse contrastive principal component analysis (scPCA) of high-dimensional biological data. scPCA combines the stability and interpretability of sparse PCA with contrastive PCA's ability to disentangle biological signal from unwanted variation through the use of control data. Also implements and extends cPCA.
High-throughput single-cell measurements of DNA methylomes can quantify methylation heterogeneity and uncover its role in gene regulation. However, technical limitations and sparse coverage can preclude this task. scMET is a hierarchical Bayesian model which overcomes sparsity, sharing information across cells and genomic features to robustly quantify genuine biological heterogeneity. scMET can identify highly variable features that drive epigenetic heterogeneity, and perform differential methylation and variability analyses. We illustrate how scMET facilitates the characterization of epigenetically distinct cell populations and how it enables the formulation of novel hypotheses on the epigenetic regulation of gene expression.
The package contains local copy of the Synaptic proteome database. On top of this it provide a set of utility R functions to query and analyse its content. It allows extraction of information for specific genes and building the protein-protein interaction graph for gene sets, synaptic compartments, and brain regions.