Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Package contains methods for data retrieval from IMPC Database.
InterCellar is implemented as an R/Bioconductor Package containing a Shiny app that allows users to interactively analyze cell-cell communication from scRNA-seq data. Starting from precomputed ligand-receptor interactions, InterCellar provides filtering options, annotations and multiple visualizations to explore clusters, genes and functions. Finally, based on functional annotation from Gene Ontology and pathway databases, InterCellar implements data-driven analyses to investigate cell-cell communication in one or multiple conditions.
Illumina HumanWG6v1 annotation data (chip illuminaHumanv1) assembled using data from public repositories.
Illumina HumanWGv2 annotation data (chip illuminaHumanv2BeadID) assembled using data from public repositories to be used with data summarized from bead-level data with numeric ArrayAddressIDs as keys. Illumina probes with a No match or Bad quality score were removed prior to annotation. See http://www.compbio.group.cam.ac.uk/Resources/Annotation/index.html and Barbosa-Morais et al (2010) A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data. Nucleic Acids Research.
This package can easily make heatmaps which are produced by the ComplexHeatmap package into interactive applications. It provides two types of interactivities: 1. on the interactive graphics device, and 2. on a Shiny app. It also provides functions for integrating the interactive heatmap widgets for more complex Shiny app development.
An annotation package for Illumina's MSA methylation arrays.
‘idpr’ aims to integrate tools for the computational analysis of intrinsically disordered proteins (IDPs) within R. This package is used to identify known characteristics of IDPs for a sequence of interest with easily reported and dynamic results. Additionally, this package includes tools for IDP-based sequence analysis to be used in conjunction with other R packages. Described in McFadden WM & Yanowitz JL (2022). "idpr: A package for profiling and analyzing Intrinsically Disordered Proteins in R." PloS one, 17(4), e0266929. <https://doi.org/10.1371/journal.pone.0266929>.
The igblastr package provides functions to conveniently install and use a local IgBLAST installation from within R. IgBLAST is described at <https://pubmed.ncbi.nlm.nih.gov/23671333/>. IgBLAST web interface: <https://www.ncbi.nlm.nih.gov/igblast/>.
Illumina Ratv1 annotation data (chip illuminaRatv1) assembled using data from public repositories.
Illumina MouseWG6v1p1 annotation data (chip illuminaMousev1p1) assembled using data from public repositories.
Iteratively Adjusted Surrogate Variable Analysis (IA-SVA) is a statistical framework to uncover hidden sources of variation even when these sources are correlated. IA-SVA provides a flexible methodology to i) identify a hidden factor for unwanted heterogeneity while adjusting for all known factors; ii) test the significance of the putative hidden factor for explaining the unmodeled variation in the data; and iii), if significant, use the estimated factor as an additional known factor in the next iteration to uncover further hidden factors.
Hidden Ising models are implemented to identify enriched genomic regions in ChIP-chip data. They can be used to analyze the data from multiple platforms (e.g., Affymetrix, Agilent, and NimbleGen), and the data with single to multiple replicates.
An R package to build, validate and apply absolute risk models.
Illumina HumanHT12v4 annotation data (chip illuminaHumanv4) assembled using data from public repositories.
This package provides a tool to measure reproducibility between genomic experiments that produce two-dimensional peaks (interactions between peaks), such as ChIA-PET, HiChIP, and HiC. idr2d is an extension of the original idr package, which is intended for (one-dimensional) ChIP-seq peaks.
Bayesian hidden Ising models are implemented to identify IP-enriched genomic regions from ChIP-seq data. They can be used to analyze ChIP-seq data with and without controls and replicates.
This package performs Intron-Exon Retention analysis on RNA-seq data (.bam files).
Detection of biases in the usage of immunoglobulin (Ig) genes is an important task in immune repertoire profiling. IgGeneUsage detects aberrant Ig gene usage between biological conditions using a probabilistic model which is analyzed computationally by Bayes inference. With this IgGeneUsage also avoids some common problems related to the current practice of null-hypothesis significance testing.
iSEEu (the iSEE universe) contains diverse functionality to extend the usage of the iSEE package, including additional classes for the panels, or modes allowing easy configuration of iSEE applications.
This package consolidates a comprehensive set of information measurements, encompassing mutual information, conditional mutual information, interaction information, partial information decomposition, and part mutual information.
iSEEfier provides a set of functionality to quickly and intuitively create, inspect, and combine initial configuration objects. These can be conveniently passed in a straightforward manner to the function call to launch iSEE() with the specified configuration. This package currently works seamlessly with the sets of panels provided by the iSEE and iSEEu packages, but can be extended to accommodate the usage of any custom panel (e.g. from iSEEde, iSEEpathways, or any panel developed independently by the user).
An annotation package for Illumina's EPIC methylation arrays.
The iterative Bayesian Model Averaging (BMA) algorithm is a variable selection and classification algorithm with an application of classifying 2-class microarray samples, as described in Yeung, Bumgarner and Raftery (Bioinformatics 2005, 21: 2394-2402).
This package integrates colocalization probabilities from colocalization analysis with transcriptome-wide association study (TWAS) scan summary statistics to implicate genes that may be biologically relevant to a complex trait. The probabilistic framework implemented in this package constrains the TWAS scan z-score-based likelihood using a gene-level colocalization probability. Given gene set annotations, this package can estimate gene set enrichment using posterior probabilities from the TWAS-colocalization integration step.