Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Base annotation databases for malaria, intended ONLY to be used by AnnotationDbi to produce regular annotation packages.
This package provides a collection of microRNAs/targets from external resources, including validated microRNA-target databases (miRecords, miRTarBase and TarBase), predicted microRNA-target databases (DIANA-microT, ElMMo, MicroCosm, miRanda, miRDB, PicTar, PITA and TargetScan) and microRNA-disease/drug databases (miR2Disease, Pharmaco-miR VerSe and PhenomiR).
The package implements MBASED algorithm for detecting allele-specific gene expression from RNA count data, where allele counts at individual loci (SNVs) are integrated into a gene-specific measure of ASE, and utilizes simulations to appropriately assess the statistical significance of observed ASE.
This package provides a package containing an environment representing the MG_U74A.cdf file.
Store minor allele frequency data from the Exome Aggregation Consortium (ExAC release 1.0) for the human genome version hs37d5.
mitch is an R package for multi-contrast enrichment analysis. At it’s heart, it uses a rank-MANOVA based statistical approach to detect sets of genes that exhibit enrichment in the multidimensional space as compared to the background. The rank-MANOVA concept dates to work by Cox and Mann (https://doi.org/10.1186/1471-2105-13-S16-S12). mitch is useful for pathway analysis of profiling studies with one, two or more contrasts, or in studies with multiple omics profiling, for example proteomic, transcriptomic, epigenomic analysis of the same samples. mitch is perfectly suited for pathway level differential analysis of scRNA-seq data. We have an established routine for pathway enrichment of Infinium Methylation Array data (see vignette). The main strengths of mitch are that it can import datasets easily from many upstream tools and has advanced plotting features to visualise these enrichments.
This package provides a package containing an environment representing the MoGene-1_0-st-v1.cdf file.
FHCRC Genomics Shared Resource Mu22v3 Annotation Data (Mu22v3) assembled using data from public repositories.
This package provides a comprehensive tool for converting and retrieving the miRNA Name, Accession, Sequence, Version, History and Family information in different miRBase versions. It can process a huge number of miRNAs in a short time without other depends.
This package was automatically created by package AnnotationForge version 1.7.17. The exon-level probeset genome location was retrieved from Netaffx using AffyCompatible.
Affymetrix mta10 annotation data (chip mta10probeset) assembled using data from public repositories.
Our R package MultiRNAflow provides an easy to use unified framework allowing to automatically make both unsupervised and supervised (DE) analysis for datasets with an arbitrary number of biological conditions and time points. In particular, our code makes a deep downstream analysis of DE information, e.g. identifying temporal patterns across biological conditions and DE genes which are specific to a biological condition for each time.
This package provides functions for fitting MOSAiCS and MOSAiCS-HMM, a statistical framework to analyze one-sample or two-sample ChIP-seq data of transcription factor binding and histone modification.
gene target tabale of miRNA for human/mouse used for MiRaGE package.
This package provides a package containing an environment representing the MG_U74Cv2.CDF file.
Agilent Mouse annotation data (chip mgug4121a) assembled using data from public repositories.
The package is unified implementation of MeSH.db, MeSH.AOR.db, and MeSH.PCR.db and also is interface to construct Gene-MeSH package (MeSH.XXX.eg.db). loadMeSHDbiPkg import sqlite file and generate MeSH.XXX.eg.db.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was MOE430A\_probe\_tab.
This package provides data access to counts matrices and meta-data for single-cell RNA sequencing data of thymic epithlial cells across mouse ageing using SMARTseq2 and 10X Genommics chemistries. Access is provided as a data package via ExperimentHub. It is designed to facilitate the re-use of data from Baran-Gale _et al._ in a consistent format that includes relevant and informative meta-data.
Store minor allele frequency data from the Exome Aggregation Consortium (ExAC release 1.0 subset of nonTCGA exomes) for the human genome version hs37d5.
MSstats package provide tools for preprocessing, summarization and differential analysis of mass spectrometry (MS) proteomics data. Recently, some MS protocols enable acquisition of data sets that result in larger than memory quantitative data. MSstats functions are not able to process such data. MSstatsBig package provides additional converter functions that enable processing larger than memory data sets.
Store minor allele frequency data from the Genome Aggregation Database (gnomAD exomes release 2.1) for the human genome version hs37d5.
Affymetrix mogene10 annotation data (chip mogene10sttranscriptcluster) assembled using data from public repositories.
MetaPhOR was developed to enable users to assess metabolic dysregulation using transcriptomic-level data (RNA-sequencing and Microarray data) and produce publication-quality figures. A list of differentially expressed genes (DEGs), which includes fold change and p value, from DESeq2 or limma, can be used as input, with sample size for MetaPhOR, and will produce a data frame of scores for each KEGG pathway. These scores represent the magnitude and direction of transcriptional change within the pathway, along with estimated p-values.MetaPhOR then uses these scores to visualize metabolic profiles within and between samples through a variety of mechanisms, including: bubble plots, heatmaps, and pathway models.