Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a package containing an environment representing the Mu11KsubB.CDF file.
The package aims to identify miRNA sponge or ceRNA modules in heterogeneous data. It provides several functions to study miRNA sponge modules at single-sample and multi-sample levels, including popular methods for inferring gene modules (candidate miRNA sponge or ceRNA modules), and two functions to identify miRNA sponge modules at single-sample and multi-sample levels, as well as several functions to conduct modular analysis of miRNA sponge modules.
MoleculeExperiment contains functions to create and work with objects from the new MoleculeExperiment class. We introduce this class for analysing molecule-based spatial transcriptomics data (e.g., Xenium by 10X, Cosmx SMI by Nanostring, and Merscope by Vizgen). This allows researchers to analyse spatial transcriptomics data at the molecule level, and to have standardised data formats accross vendors.
This package provides a collection of Breast Cancer Transcriptomic Datasets that are part of the MetaGxData package compendium.
Data sets for the book Modern Statistics for Modern Biology', S.P. Holmes and W. Huber.
Data for the mosaics package, consisting of (1) chromosome 22 ChIP and control sample data from a ChIP-seq experiment of STAT1 binding and H3K4me3 modification in MCF7 cell line from ENCODE database (HG19) and (2) chromosome 21 ChIP and control sample data from a ChIP-seq experiment of STAT1 binding, with mappability, GC content, and sequence ambiguity scores of human genome HG18.
MetaDICT is a method for the integration of microbiome data. This method is designed to remove batch effects and preserve biological variation while integrating heterogeneous datasets. MetaDICT can better avoid overcorrection when unobserved confounding variables are present.
Model-based Gene Set Analysis (MGSA) is a Bayesian modeling approach for gene set enrichment. The package mgsa implements MGSA and tools to use MGSA together with the Gene Ontology.
This package provides a seamless interface to the MEME Suite family of tools for motif analysis. memes provides data aware utilities for using GRanges objects as entrypoints to motif analysis, data structures for examining & editing motif lists, and novel data visualizations. memes functions and data structures are amenable to both base R and tidyverse workflows.
This package provides a package containing an environment representing the Mu6500subA.CDF file.
The package is designed to detect marker genes from Microarray gene expression data sets.
Agilent annotation data (chip mgug4104a) assembled using data from public repositories.
This package provides a package containing an environment representing the MG_U74Bv2.CDF file.
MSstatsShiny is an R-Shiny graphical user interface (GUI) integrated with the R packages MSstats, MSstatsTMT, and MSstatsPTM. It provides a point and click end-to-end analysis pipeline applicable to a wide variety of experimental designs. These include data-dependedent acquisitions (DDA) which are label-free or tandem mass tag (TMT)-based, as well as DIA, SRM, and PRM acquisitions and those targeting post-translational modifications (PTMs). The application automatically saves users selections and builds an R script that recreates their analysis, supporting reproducible data analysis.
FHCRC Genomics Shared Resource Mu15v1 Annotation Data (Mu15v1) assembled using data from public repositories.
MicrobiotaProcess is an R package for analysis, visualization and biomarker discovery of microbial datasets. It introduces MPSE class, this make it more interoperable with the existing computing ecosystem. Moreover, it introduces a tidy microbiome data structure paradigm and analysis grammar. It provides a wide variety of microbiome data analysis procedures under the unified and common framework (tidy-like framework).
MultimodalExperiment is an S4 class that integrates bulk and single-cell experiment data; it is optimally storage-efficient, and its methods are exceptionally fast. It effortlessly represents multimodal data of any nature and features normalized experiment, subject, sample, and cell annotations, which are related to underlying biological experiments through maps. Its coordination methods are opt-in and employ database-like join operations internally to deliver fast and flexible management of multimodal data.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was miRNA-1\_0\_probe\_tab.
gene target tabale of miRNA for human/mouse used for MiRaGE package.
This package allows to estimate chronological and gestational DNA methylation (DNAm) age as well as biological age using different methylation clocks. Chronological DNAm age (in years) : Horvath's clock, Hannum's clock, BNN, Horvath's skin+blood clock, PedBE clock and Wu's clock. Gestational DNAm age : Knight's clock, Bohlin's clock, Mayne's clock and Lee's clocks. Biological DNAm clocks : Levine's clock and Telomere Length's clock.
This package primarily identifies variants in mitochondrial genomes from BAM alignment files. It filters these variants to remove RNA editing events then estimates their evolutionary relationship (i.e. their phylogenetic tree) and groups single cells into clones. It also visualizes the mutations and providing additional genomic context.
Identification of differentially expressed genes and false discovery rate (FDR) calculation by Multiple Comparison test.
This package provides a set of tools for network analysis using mass spectrometry-based proteomics data and network databases. The package takes as input the output of MSstats differential abundance analysis and provides functions to perform enrichment analysis and visualization in the context of prior knowledge from past literature. Notably, this package integrates with INDRA, which is a database of biological networks extracted from the literature using text mining techniques.
It contains functions for estimating the DNA copy number profile using mBPCR with the aim of detecting regions with copy number changes.