Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Platform Design Info for The Manufacturer's Name HG-U133A_2.
Platform Design Info for The Manufacturer's Name MOE430B.
Platform Design Info for The Manufacturer's Name Mouse430A_2.
This package provides a GUI interface for the DAPAR package. The package Prostar (Proteomics statistical analysis with R) is a Bioconductor distributed R package which provides all the necessary functions to analyze quantitative data from label-free proteomics experiments. Contrarily to most other similar R packages, it is endowed with rich and user-friendly graphical interfaces, so that no programming skill is required.
Platform Design Info for The Manufacturer's Name Hu6800.
Platform Design Info for The Manufacturer's Name MG_U74A.
Platform Design Info for NimbleGen 2006-07-18_hg18_refseq_promoter.
Platform Design Info for Affymetrix EleGene-1_0-st.
Platform Design Info for The Manufacturer's Name HG_U95C.
Platform Design Info for Affymetrix Mapping250K_Nsp.
Platform Design Info for Affymetrix DroGene-1_0-st.
Platform Design Info for Affymetrix RaEx-1_0-st-v1.
The PLIER (Probe Logarithmic Error Intensity Estimate) method produces an improved signal by accounting for experimentally observed patterns in probe behavior and handling error at the appropriately at low and high signal values.
PanomiR is a package to detect miRNAs that target groups of pathways from gene expression data. This package provides functionality for generating pathway activity profiles, determining differentially activated pathways between user-specified conditions, determining clusters of pathways via the PCxN package, and generating miRNAs targeting clusters of pathways. These function can be used separately or sequentially to analyze RNA-Seq data.
Platform Design Info for Affymetrix miRNA-3_1.
Platform Design Info for Affymetrix BovGene-1_0-st.
This is a package that includes pre-processing and quality control functions that can remove margin events, compensate and transform the data and that will use PeacoQCSignalStability for quality control. This last function will first detect peaks in each channel of the flowframe. It will remove anomalies based on the IsolationTree function and the MAD outlier detection method. This package can be used for both flow- and mass cytometry data.
PAA imports single color (protein) microarray data that has been saved in gpr file format - esp. ProtoArray data. After preprocessing (background correction, batch filtering, normalization) univariate feature preselection is performed (e.g., using the "minimum M statistic" approach - hereinafter referred to as "mMs"). Subsequently, a multivariate feature selection is conducted to discover biomarker candidates. Therefore, either a frequency-based backwards elimination aproach or ensemble feature selection can be used. PAA provides a complete toolbox of analysis tools including several different plots for results examination and evaluation.
Pancreatic ductal adenocarcinoma (PDA) has a relatively poor prognosis and is one of the most lethal cancers. Molecular classification of gene expression profiles holds the potential to identify meaningful subtypes which can inform therapeutic strategy in the clinical setting. The Pancreatic Cancer Adenocarcinoma Tool-Kit (PDATK) provides an S4 class-based interface for performing unsupervised subtype discovery, cross-cohort meta-clustering, gene-expression-based classification, and subsequent survival analysis to identify prognostically useful subtypes in pancreatic cancer and beyond. Two novel methods, Consensus Subtypes in Pancreatic Cancer (CSPC) and Pancreatic Cancer Overall Survival Predictor (PCOSP) are included for consensus-based meta-clustering and overall-survival prediction, respectively. Additionally, four published subtype classifiers and three published prognostic gene signatures are included to allow users to easily recreate published results, apply existing classifiers to new data, and benchmark the relative performance of new methods. The use of existing Bioconductor classes as input to all PDATK classes and methods enables integration with existing Bioconductor datasets, including the 21 pancreatic cancer patient cohorts available in the MetaGxPancreas data package. PDATK has been used to replicate results from Sandhu et al (2019) [https://doi.org/10.1200/cci.18.00102] and an additional paper is in the works using CSPC to validate subtypes from the included published classifiers, both of which use the data available in MetaGxPancreas. The inclusion of subtype centroids and prognostic gene signatures from these and other publications will enable researchers and clinicians to classify novel patient gene expression data, allowing the direct clinical application of the classifiers included in PDATK. Overall, PDATK provides a rich set of tools to identify and validate useful prognostic and molecular subtypes based on gene-expression data, benchmark new classifiers against existing ones, and apply discovered classifiers on novel patient data to inform clinical decision making.
Operate on `GInteractions` objects as tabular data using `dplyr`-like verbs. The functions and methods in `plyinteractions` provide a grammatical approach to manipulate `GInteractions`, to facilitate their integration in genomic analysis workflows.
Platform Design Info for Affymetrix GuiGene-1_1-st.
Platform Design Info for Affymetrix Clariom_S_Mouse_HT.
PartheenMetaData http://swegene.onk.lu.se Annotation Data (PartheenMetaData) assembled using data from public repositories.
Platform Design Info for Affymetrix MarGene-1_1-st.