Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to access data from public RESTful APIs including World Bank API and REST Countries API', retrieving real-time or historical information related to Algeria. The package enables users to query economic indicators and international demographic and geopolitical statistics in a reproducible way. It is designed for researchers, analysts, and developers who require reliable and programmatic access to Algerian data through established APIs. For more information on the APIs, see: World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392> and REST Countries API <https://restcountries.com/>.
Create beautiful and interactive visualizations in a single function call. The data.table package is utilized to perform the data wrangling necessary to prepare your data for the plot types you wish to build, along with allowing fast processing for big data. There are two broad classes of plots available: standard plots and machine learning evaluation plots. There are lots of parameters available in each plot type function for customizing the plots (such as faceting) and data wrangling (such as variable transformations and aggregation).
Perform one-dimensional spline regression with automatic knot selection. This package uses a penalized approach to select the most relevant knots. B-splines of any degree can be fitted. More details in Goepp et al. (2018)', "Spline Regression with Automatic Knot Selection", <arXiv:1808.01770>.
The method of anticlustering partitions a pool of elements into groups (i.e., anticlusters) with the goal of maximizing between-group similarity or within-group heterogeneity. The anticlustering approach thereby reverses the logic of cluster analysis that strives for high within-group homogeneity and clear separation between groups. Computationally, anticlustering is accomplished by maximizing instead of minimizing a clustering objective function, such as the intra-cluster variance (used in k-means clustering) or the sum of pairwise distances within clusters. The main function anticlustering() gives access to optimal and heuristic anticlustering methods described in Papenberg and Klau (2021; <doi:10.1037/met0000301>), Brusco et al. (2020; <doi:10.1111/bmsp.12186>), Papenberg (2024; <doi:10.1111/bmsp.12315>), Papenberg, Wang, et al. (2025; <doi:10.1016/j.crmeth.2025.101137>), Papenberg, Breuer, et al. (2025; <doi:10.1017/psy.2025.10052>), and Yang et al. (2022; <doi:10.1016/j.ejor.2022.02.003>). The optimal algorithms require that an integer linear programming solver is installed. This package will install lpSolve (<https://cran.r-project.org/package=lpSolve>) as a default solver, but it is also possible to use the package Rglpk (<https://cran.r-project.org/package=Rglpk>), which requires the GNU linear programming kit (<https://www.gnu.org/software/glpk/glpk.html>), the package Rsymphony (<https://cran.r-project.org/package=Rsymphony>), which requires the SYMPHONY ILP solver (<https://github.com/coin-or/SYMPHONY>), or the commercial solver Gurobi, which provides its own R package that is not available via CRAN (<https://www.gurobi.com/downloads/>). Rglpk', Rsymphony', gurobi and their system dependencies have to be manually installed by the user because they are only suggested dependencies. Full access to the bicriterion anticlustering method proposed by Brusco et al. (2020) is given via the function bicriterion_anticlustering(), while kplus_anticlustering() implements the full functionality of the k-plus anticlustering approach proposed by Papenberg (2024). Some other functions are available to solve classical clustering problems. The function balanced_clustering() applies a cluster analysis under size constraints, i.e., creates equal-sized clusters. The function matching() can be used for (unrestricted, bipartite, or K-partite) matching. The function wce() can be used optimally solve the (weighted) cluster editing problem, also known as correlation clustering, clique partitioning problem or transitivity clustering.
An R wrapper for agena.ai <https://www.agena.ai> which provides users capabilities to work with agena.ai using the R environment. Users can create Bayesian network models from scratch or import existing models in R and export to agena.ai cloud or local API for calculations. Note: running calculations requires a valid agena.ai API license (past the initial trial period of the local API).
Uses locality sensitive hashing and creates a neighbourhood graph for a data set and calculates the adjusted rank index value for the same. It uses Gaussian random planes to decide the nature of a given point. Datar, Mayur, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni(2004) <doi:10.1145/997817.997857>.
This package provides tools for assessing and selecting auxiliary variables using LASSO. The package includes functions for variable selection and diagnostics, facilitating survey calibration analysis with emphasis on robust auxiliary vector selection. For more details see Tibshirani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x> and Caughrey and Hartman (2017) <doi:10.2139/ssrn.3494436>.
Collect your data on digital marketing campaigns from Awin using the Windsor.ai API <https://windsor.ai/api-fields/>.
Client package for the AWS Key Management Service <https://aws.amazon.com/kms/>, a cloud service for managing encryption keys.
Wraps the Ace editor in a HTML widget. The Ace editor has support for many languages. It can be opened in the viewer pane of RStudio', and this provides a second source editor.
This package provides assessment tools for regression models with discrete and semicontinuous outcomes proposed in Yang (2023) <doi:10.48550/arXiv.2308.15596>. It calculates the double probability integral transform (DPIT) residuals, constructs QQ plots of residuals and the ordered curve for assessing mean structures.
Extraction of subsequences into FASTA files from GenBank annotations where gene names may vary among accessions. Borstein & O'Meara (2018) <doi:10.7717/peerj.5179>.
This package provides tools for the quantitative analysis of axon integrity in microscopy images. It implements image pre-processing, adaptive thresholding, feature extraction, and support vector machine-based classification to compute indices such as the Axon Integrity Index (AII) and Degeneration Index (DI). The package is designed for reproducible and automated analysis in neuroscience research.
Solves the problem of identifying the densest submatrix in a given or sampled binary matrix, Bombina et al. (2019) <arXiv:1904.03272>.
Description: Computes maximum likelihood estimates of general, zero-inflated, and zero-altered models for discrete and continuous distributions. It also performs Kolmogorov-Smirnov (KS) tests and likelihood ratio tests for general, zero-inflated, and zero-altered data. Additionally, it obtains the inverse of the Fisher information matrix and confidence intervals for the parameters of general, zero-inflated, and zero-altered models. The package simulates random deviates from zero-inflated or hurdle models to obtain maximum likelihood estimates. Based on the work of Aldirawi et al. (2022) <doi:10.1007/s42519-021-00230-y> and Dousti Mousavi et al. (2023) <doi:10.1080/00949655.2023.2207020>.
An iterative implementation of a recursive binary partitioning algorithm to measure pairwise dependence with a modular design that allows user specification of the splitting logic and stop criteria. Helper functions provide suggested versions of both and support visualization and the computation of summary statistics on final binnings. For a thorough discussion and demonstration of the algorithm, see Salahub and Oldford (2025) <doi:10.1002/sam.70042>.
This toolkit implements a numerical solution algorithm to invert a quality of life measure from observed data. Unlike the traditional Rosen-Roback measure, this measure accounts for mobility frictionsâ generated by idiosyncratic tastes and local ties â and trade frictions â generated by trade costs and non-tradable services, thereby reducing non-classical measurement error. The QoL measure is based on Ahlfeldt, Bald, Roth, Seidel (2024) <https://econpapers.repec.org/RePEc:boc:bocode:s459382> "Measuring Quality of Life under Spatial Frictions". When using this programme or the toolkit in your work, please cite the paper.
This package produces several metrics to assess the prediction of ordinal categories based on the estimated probability distribution for each unit of analysis produced by any model returning a matrix with these probabilities.
This package provides functions to calculate Gray Level Co-occurrence Matrix(GLCM), RGB-based Vegetative Index(RGB VI) and Normalized Difference Vegetation Index(NDVI) family image features. GLCM calculations are based on Haralick (1973) <doi:10.1109/TSMC.1973.4309314>.
Penalized variable selection tools for the Cox proportional hazards model with interval censored and possibly left truncated data. It performs variable selection via penalized nonparametric maximum likelihood estimation with an adaptive lasso penalty. The optimal thresholding parameter can be searched by the package based on the profile Bayesian information criterion (BIC). The asymptotic validity of the methodology is established in Li et al. (2019 <doi:10.1177/0962280219856238>). The unpenalized nonparametric maximum likelihood estimation for interval censored and possibly left truncated data is also available.
Find an upper bound for the total amount of overstatement of assets in a set of accounts, or estimate the amount of sales tax owed on a collection of transactions (Meeden and Sargent, 2007, <doi:10.1080/03610920701386802>).
Interactive graphical user interface (GUI) for the package AdhereR', allowing the user to access different data sources, to explore the patterns of medication use therein, and the computation of various measures of adherence. It is implemented using Shiny and HTML/CSS/JavaScript.
Modern software often poorly support older file formats. This package intends to handle many file formats that were native to the antiquated Commodore Amiga machine. This package focuses on file types from the older Amiga operating systems (<= 3.0). It will read and write specific file formats and coerces them into more contemporary data.
Datasets to Accompany S. Weisberg (2014, ISBN: 978-1-118-38608-8), "Applied Linear Regression," 4th edition. Many data files in this package are included in the `alr3` package as well, so only one of them should be used.