Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
It calculates the Air Pollution Tolerance Index (APTI) of plant species using biochemical parameters such as chlorophyll content, leaf extract pH, relative water content, and ascorbic acid content. It helps in identifying tolerant species for greenbelt development and pollution mitigation studies. It includes a shiny app for interactive APTI calculation and visualisation. For method details see, Sahu et al. (2020).<DOI:10.1007/s42452-020-3120-6>.
Calculates some antecedent discharge conditions useful in water quality modeling. Includes methods for calculating flow anomalies, base flow, and smooth discounted flows from daily flow measurements. Antecedent discharge algorithms are described and reviewed in Zhang and Ball (2017) <doi:10.1016/j.jhydrol.2016.12.052>.
This package provides functions to create image annotations through polygon outlining. Annotator has the same function as graphics::locator() but achieves its purpose through drawing, rather than multiple mouse clicks. It is based on the htmlwidgets package and fabric.js JavaScript library <https://fabricjs.com/>.
Auto-GO is a framework that enables automated, high quality Gene Ontology enrichment analysis visualizations. It also features a handy wrapper for Differential Expression analysis around the DESeq2 package described in Love et al. (2014) <doi:10.1186/s13059-014-0550-8>. The whole framework is structured in different, independent functions, in order to let the user decide which steps of the analysis to perform and which plot to produce.
Examples of datasets on allometry, the study of the relationship of biological traits to body size. This package contains the dataset of morphological measurement taken from 113 maritime earwigs (Anisolabis maritima) by Matsuzawa and Konuma (2025) <doi:10.1093/biolinnean/blaf031>.
For a binary classification the adjusted sensitivity and specificity are measured for a given fixed threshold. If the threshold for either sensitivity or specificity is not given, the crossing point between the sensitivity and specificity curves are returned. For bootstrap procedures, mean and CI bootstrap values of sensitivity, specificity, crossing point between specificity and specificity as well as AUC and AUCPR can be evaluated.
Some functions for drawing some special plots: The function bagplot plots a bagplot, faces plots chernoff faces, iconplot plots a representation of a frequency table or a data matrix, plothulls plots hulls of a bivariate data set, plotsummary plots a graphical summary of a data set, puticon adds icons to a plot, skyline.hist combines several histograms of a one dimensional data set in one plot, slider functions supports some interactive graphics, spin3R helps an inspection of a 3-dim point cloud, stem.leaf plots a stem and leaf plot, stem.leaf.backback plots back-to-back versions of stem and leaf plot.
The transmission between two time-series prices is assessed. It contains several functions for linear and nonlinear threshold co-integration, and furthermore, symmetric and asymmetric error correction models.
Easy-to-use tools for performing complex queries on avidaDB', a semantic database that stores genomic and transcriptomic data of self-replicating computer programs (known as digital organisms) that mutate and evolve within a user-defined computational environment.
Designed for the development and application of hidden Markov models and profile HMMs for biological sequence analysis. Contains functions for multiple and pairwise sequence alignment, model construction and parameter optimization, file import/export, implementation of the forward, backward and Viterbi algorithms for conditional sequence probabilities, tree-based sequence weighting, and sequence simulation. Features a wide variety of potential applications including database searching, gene-finding and annotation, phylogenetic analysis and sequence classification. Based on the models and algorithms described in Durbin et al (1998, ISBN: 9780521629713).
Fits from simple regression to highly customizable deep neural networks either with gradient descent or metaheuristic, using automatic hyper parameters tuning and custom cost function. A mix inspired by the common tricks on Deep Learning and Particle Swarm Optimization.
Enables users of ArcGIS Enterprise', ArcGIS Online', or ArcGIS Platform to read, write, publish, or manage vector and raster data via ArcGIS location services REST API endpoints <https://developers.arcgis.com/rest/>.
This package implements Collective And Point Anomaly (CAPA) Fisch, Eckley, and Fearnhead (2022) <doi:10.1002/sam.11586>, Multi-Variate Collective And Point Anomaly (MVCAPA) Fisch, Eckley, and Fearnhead (2021) <doi:10.1080/10618600.2021.1987257>, Proportion Adaptive Segment Selection (PASS) Jeng, Cai, and Li (2012) <doi:10.1093/biomet/ass059>, and Bayesian Abnormal Region Detector (BARD) Bardwell and Fearnhead (2015) <doi:10.1214/16-BA998>. These methods are for the detection of anomalies in time series data. Further information regarding the use of this package along with detailed examples can be found in Fisch, Grose, Eckley, Fearnhead, and Bardwell (2024) <doi:10.18637/jss.v110.i01>.
The AFfunction() is a function which returns an estimate of the Attributable Fraction (AF) and a plot of the AF as a function of heritability, disease prevalence, size of target group and intervention effect. Since the AF is a function of several factors, a shiny app is used to better illustrate how the relationship between the AF and heritability depends on several other factors. The app is ran by the function runShinyApp(). For more information see Dahlqwist E et al. (2019) <doi:10.1007/s00439-019-02006-8>.
This package provides alternatives to the normal adjusted R-squared estimator for the estimation of the multiple squared correlation in regression models, as fitted by the lm() function. The alternative estimators are described in Karch (2020) <DOI:10.1525/collabra.343>.
Connect to the Adobe Analytics API v2.0 <https://github.com/AdobeDocs/analytics-2.0-apis> which powers Analysis Workspace'. The package was developed with the analyst in mind, and it will continue to be developed with the guiding principles of iterative, repeatable, timely analysis.
The functions are designed to calculate the most widely-used county-level variables in agricultural production or agricultural-climatic and weather analyses. To operate some functions in this package needs download of the bulk PRISM raster. See the examples, testing versions and more details from: <https://github.com/ysd2004/acdcR>.
Annuity Random Interest Rates proposes different techniques for the approximation of the present and final value of a unitary annuity-due or annuity-immediate considering interest rate as a random variable. Cruz Rambaud et al. (2017) <doi:10.1007/978-3-319-54819-7_16>. Cruz Rambaud et al. (2015) <doi:10.23755/rm.v28i1.25>.
This package implements a credential chain for Azure OAuth 2.0 authentication based on the package httr2''s OAuth framework. Sequentially attempts authentication methods until one succeeds. During development allows interactive browser-based flows ('Device Code and Auth Code flows) and non-interactive flow ('Client Secret') in batch mode.
Training of neural networks for classification and regression tasks using mini-batch gradient descent. Special features include a function for training autoencoders, which can be used to detect anomalies, and some related plotting functions. Multiple activation functions are supported, including tanh, relu, step and ramp. For the use of the step and ramp activation functions in detecting anomalies using autoencoders, see Hawkins et al. (2002) <doi:10.1007/3-540-46145-0_17>. Furthermore, several loss functions are supported, including robust ones such as Huber and pseudo-Huber loss, as well as L1 and L2 regularization. The possible options for optimization algorithms are RMSprop, Adam and SGD with momentum. The package contains a vectorized C++ implementation that facilitates fast training through mini-batch learning.
Automatically selects and runs the most appropriate statistical test for your data, returning clear, easy-to-read results. Ideal for all experience levels.
This package provides a powerful tool for automating the early detection of disease outbreaks in time series data. aeddo employs advanced statistical methods, including hierarchical models, in an innovative manner to effectively characterize outbreak signals. It is particularly useful for epidemiologists, public health professionals, and researchers seeking to identify and respond to disease outbreaks in a timely fashion. For a detailed reference on hierarchical models, consult Henrik Madsen and Poul Thyregod's book (2011), ISBN: 9781420091557.
Automated generation, running, and interpretation of moderated nonlinear factor analysis models for obtaining scores from observed variables, using the method described by Gottfredson and colleagues (2019) <doi:10.1016/j.addbeh.2018.10.031>. This package creates M-plus input files which may be run iteratively to test two different types of covariate effects on items: (1) latent variable impact (both mean and variance); and (2) differential item functioning. After sequentially testing for all effects, it also creates a final model by including all significant effects after adjusting for multiple comparisons. Finally, the package creates a scoring model which uses the final values of parameter estimates to generate latent variable scores. \n\n This package generates TEMPLATES for M-plus inputs, which can and should be inspected, altered, and run by the user. In addition to being presented without warranty of any kind, the package is provided under the assumption that everyone who uses it is reading, interpreting, understanding, and altering every M-plus input and output file. There is no one right way to implement moderated nonlinear factor analysis, and this package exists solely to save users time as they generate M-plus syntax according to their own judgment.
This package implements the Agnostic Fay-Herriot model, an extension of the traditional small area model. In place of normal sampling errors, the sampling error distribution is estimated with a Gaussian process to accommodate a broader class of distributions. This flexibility is most useful in the presence of bounded, multi-modal, or heavily skewed sampling errors.