Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Response surface designs (RSDs) are widely used for Response Surface Methodology (RSM) based optimization studies, which aid in exploring the relationship between a group of explanatory variables and one or more response variable(s) (G.E.P. Box and K.B. Wilson (1951), "On the experimental attainment of optimum conditions" ; M. Hemavathi, Shashi Shekhar, Eldho Varghese, Seema Jaggi, Bikas Sinha & Nripes Kumar Mandal (2022) <DOI: 10.1080/03610926.2021.1944213>."Theoretical developments in response surface designs: an informative review and further thoughts".). Second order rotatable designs are the most prominent and popular class of designs used for process and product optimization trials but it is suitable for situations when all the number of levels for each factor is the same. In many practical situations, RSDs with asymmetric levels (J.S. Mehta and M.N. Das (1968). "Asymmetric rotatable designs and orthogonal transformations" ; M. Hemavathi, Eldho Varghese, Shashi Shekhar & Seema Jaggi (2020) <DOI: 10.1080/02664763.2020.1864817>. "Sequential asymmetric third order rotatable designs (SATORDs)" .) are more suitable as these designs explore more regions in the design space.This package contains functions named Asords() ,CCD_coded(), CCD_original(), SORD_coded() and SORD_original() for generating asymmetric/symmetric RSDs along with the randomized layout. It also contains another function named Pred.var() for generating the variance of predicted response as well as the moment matrix based on a second order model.
Solving high-dimensional double sparse linear regression via an iterative hard thresholding algorithm. Furthermore, the method is extended to jointly estimate multiple graphical models. For more details, please see <https://www.jmlr.org/papers/v25/23-0653.html> and <doi:10.48550/arXiv.2503.18722>.
Calculates some antecedent discharge conditions useful in water quality modeling. Includes methods for calculating flow anomalies, base flow, and smooth discounted flows from daily flow measurements. Antecedent discharge algorithms are described and reviewed in Zhang and Ball (2017) <doi:10.1016/j.jhydrol.2016.12.052>.
This package provides a collection of measures for measuring ecological diversity. Ecological diversity comes in two flavors: alpha diversity measures the diversity within a single site or sample, and beta diversity measures the diversity across two sites or samples. This package overlaps considerably with other R packages such as vegan', gUniFrac', betapart', and fossil'. We also include a wide range of functions that are implemented in software outside the R ecosystem, such as scipy', Mothur', and scikit-bio'. The implementations here are designed to be basic and clear to the reader.
Retrieves open source airport data and provides tools to look up information, translate names into codes and vice-verse, as well as some basic calculation functions for measuring distances. Data is licensed under the Open Database License.
Visualization of Design of Experiments from the agricolae package with ggplot2 framework The user provides an experiment design from the agricolae package, calls the corresponding function and will receive a visualization with ggplot2 based functions that are specific for each design. As there are many different designs, each design is tested on its type. The output can be modified with standard ggplot2 commands or with other packages with ggplot2 function extensions.
Raw and processed versions of the data from De Cock (2011) <http://ww2.amstat.org/publications/jse> are included in the package.
Accurate point and interval estimation methods for multiple linear regression coefficients, under classical normal and independent error assumptions, taking into account variable selection.
Some functions for drawing some special plots: The function bagplot plots a bagplot, faces plots chernoff faces, iconplot plots a representation of a frequency table or a data matrix, plothulls plots hulls of a bivariate data set, plotsummary plots a graphical summary of a data set, puticon adds icons to a plot, skyline.hist combines several histograms of a one dimensional data set in one plot, slider functions supports some interactive graphics, spin3R helps an inspection of a 3-dim point cloud, stem.leaf plots a stem and leaf plot, stem.leaf.backback plots back-to-back versions of stem and leaf plot.
Simulate the effect of management or demography on allele retention and inbreeding accumulation in bottlenecked populations of animals with overlapping generations.
Multi-category angle-based large-margin classifiers. See Zhang and Liu (2014) <doi:10.1093/biomet/asu017> for details.
This package provides alternatives to the normal adjusted R-squared estimator for the estimation of the multiple squared correlation in regression models, as fitted by the lm() function. The alternative estimators are described in Karch (2020) <DOI:10.1525/collabra.343>.
This package performs the analysis of completely randomized experimental designs (CRD), randomized blocks (RBD) and Latin square (LSD), experiments in double and triple factorial scheme (in CRD and RBD), experiments in subdivided plot scheme (in CRD and RBD), subdivided and joint analysis of experiments in CRD and RBD, linear regression analysis, test for two samples. The package performs analysis of variance, ANOVA assumptions and multiple comparison test of means or regression, according to Pimentel-Gomes (2009, ISBN: 978-85-7133-055-9), nonparametric test (Conover, 1999, ISBN: 0471160687), test for two samples, joint analysis of experiments according to Ferreira (2018, ISBN: 978-85-7269-566-4) and generalized linear model (glm) for binomial and Poisson family in CRD and RBD (Carvalho, FJ (2019), <doi:10.14393/ufu.te.2019.1244>). It can also be used to obtain descriptive measures and graphics, in addition to correlations and creative graphics used in agricultural sciences (Agronomy, Zootechnics, Food Science and related areas). Shimizu, G. D., Marubayashi, R. Y. P., Goncalves, L. S. A. (2025) <doi:10.4025/actasciagron.v47i1.73889>.
Leveraging Monte Carlo simulations, this package provides tools for diagnosing regression models. It implements a parametric bootstrap framework to compute statistics, generates diagnostic envelopes to assess goodness-of-fit, and evaluates type I error control for Wald tests. By simulating data under the assumption that the model is true, it helps to identify model mis-specifications and enhances the reliability of the model inferences.
Construct time series for Germany's municipalities (Gemeinden) and districts (Kreise) using a annual crosswalk constructed by the Federal Office for Building and Regional Planning (BBSR).
This package provides tools to perform model selection alongside estimation under Linear, Logistic, Negative binomial, Quantile, and Skew-Normal regression. Under the spike-and-slab method, a probability for each possible model is estimated with the posterior mean, credibility interval, and standard deviation of coefficients and parameters under the most probable model.
Formalizes spatial support at scale for ecological and geographical analysis. Given points and support polygons, classifies points as "core" (inside original support) or "halo" (inside scaled support but outside original), pruning all others. The default scale produces equal core and halo areas - a geometrically derived choice requiring no tuning. An optional mask enforces hard boundaries such as coastlines. Political borders are treated as soft boundaries with no ecological meaning.
This package provides tools for classical parameter estimation of adsorption isotherm models, including both linear and nonlinear forms of the Freundlich, Langmuir, and Temkin isotherms. This package allows users to fit these models to experimental data, providing parameter estimates along with fit statistics such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Error metrics are computed to evaluate model performance, and the package produces model fit plots with bootstrapped 95% confidence intervals. Additionally, it generates residual plots for diagnostic assessment of the models. Researchers and engineers in material science, environmental engineering, and chemical engineering can rigorously analyze adsorption behavior in their systems using this straightforward, non-Bayesian approach. For more details, see Harding (1907) <doi:10.2307/2987516>.
This package provides a function to calibrate variant effect scores against evidence strength categories defined by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) guidelines. The method computes likelihood ratios of pathogenicity via kernel density estimation of pathogenic and benign score distributions, and derives score intervals corresponding to ACMG/AMP evidence levels. This enables researchers and clinical geneticists to interpret functional and computational variant scores in a reproducible and standardised manner. For details, see Badonyi and Marsh (2025) <doi:10.1093/bioinformatics/btaf503>.
This package provides a number of functions to create and analyze factorial plans according to the Design of Experiments (DoE) approach, with the addition of some utility function to perform some statistical analyses. DoE approach follows the approach in "Design and Analysis of Experiments" by Douglas C. Montgomery (2019, ISBN:978-1-119-49244-3). The package also provides utilities used in the course "Analysis of Data and Statistics" at the University of Trento, Italy.
ATPOL is a rectangular grid system used for botanical studies in Poland. The ATPOL grid was developed in Institute of Botany, Jagiellonian University, Krakow, Poland in 70. Since then it is widely used to represent distribution of plants in Poland. atpolR provides functions to translate geographic coordinates to the grid and vice versa. It also allows to create a choreograph map.
Efficient algorithms <https://jmlr.org/papers/v24/21-0751.html> for computing Area Under Minimum, directional derivatives, and line search optimization of a linear model, with objective defined as either max Area Under the Curve or min Area Under Minimum.
Created to host raw accelerometry data sets and their derivatives which are used in the corresponding adept package.
This package provides a collection of tools that support data splitting, predictive modeling, and model evaluation. A typical function is to split a dataset into a training dataset and a test dataset. Then compare the data distribution of the two datasets. Another feature is to support the development of predictive models and to compare the performance of several predictive models, helping to select the best model.