Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimates the attributable fraction in different sampling designs adjusted for measured confounders using logistic regression (cross-sectional and case-control designs), conditional logistic regression (matched case-control design), Cox proportional hazard regression (cohort design with time-to- event outcome), gamma-frailty model with a Weibull baseline hazard and instrumental variables analysis. An exploration of the AF with a genetic exposure can be found in the package AFheritability Dahlqwist E et al. (2019) <doi:10.1007/s00439-019-02006-8>.
An evaluation framework for algorithm portfolios using Item Response Theory (IRT). We use continuous and polytomous IRT models to evaluate algorithms and introduce algorithm characteristics such as stability, effectiveness and anomalousness (Kandanaarachchi, Smith-Miles 2020) <doi:10.13140/RG.2.2.11363.09760>.
This package provides a number of functions to create and analyze factorial plans according to the Design of Experiments (DoE) approach, with the addition of some utility function to perform some statistical analyses. DoE approach follows the approach in "Design and Analysis of Experiments" by Douglas C. Montgomery (2019, ISBN:978-1-119-49244-3). The package also provides utilities used in the course "Analysis of Data and Statistics" at the University of Trento, Italy.
Make the compiled Java modules of the Amazon Web Services ('AWS') SDK available to be used in downstream R packages interacting with AWS'. See <https://aws.amazon.com/sdk-for-java> for more information on the AWS SDK for Java.
It computes two frequently applied actuarial measures, the expected shortfall and the value at risk. Seven well-known classical distributions in connection to the Bell generalized family are used as follows: Bell-exponential distribution, Bell-extended exponential distribution, Bell-Weibull distribution, Bell-extended Weibull distribution, Bell-Lomax distribution, Bell-Burr-12 distribution, and Bell-Burr-X distribution. Related works include: a) Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). "A new useful exponential model with applications to quality control and actuarial data". Computational Intelligence and Neuroscience, 2022. <doi:10.1155/2022/2489998>. b) Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). "Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data". Open Physics, 21(1), 20220242. <doi:10.1515/phys-2022-0242>.
Adjusts output of cranlogs package to account for CRAN'-wide daily automated downloads and re-downloads caused by package updates.
Colour palettes and a ggplot2 theme to follow the UK Government Analysis Function best practice guidance for producing data visualisations, available at <https://analysisfunction.civilservice.gov.uk/policy-store/data-visualisation-charts/>. Includes continuous and discrete colour and fill scales, as well as a ggplot2 theme.
This package provides functions to fit the binomial and multinomial additive hazard models and to estimate the contribution of diseases/conditions to the disability prevalence, as proposed by Nusselder and Looman (2004) and extended by Yokota et al (2017).
This package provides functions for Posterior estimates of Accelerated Failure Time(AFT) model with MCMC and Maximum likelihood estimates of AFT model without MCMC for univariate and multivariate analysis in high dimensional gene expression data are available in this afthd package. AFT model with Bayesian framework for multivariate in high dimensional data has been proposed by Prabhash et al.(2016) <doi:10.21307/stattrans-2016-046>.
Trigger animation effects on scroll on any HTML element of shiny and rmarkdown', such as any text or plot, thanks to the AOS Animate On Scroll jQuery library.
Perform one-dimensional spline regression with automatic knot selection. This package uses a penalized approach to select the most relevant knots. B-splines of any degree can be fitted. More details in Goepp et al. (2018)', "Spline Regression with Automatic Knot Selection", <arXiv:1808.01770>.
This package implements a parsimonious evolutionary model to analyze and predict gene-functional annotations in phylogenetic trees as described in Vega Yon et al. (2021) <doi:10.1371/journal.pcbi.1007948>. Focusing on computational efficiency, aphylo makes it possible to estimate pooled phylogenetic models, including thousands (hundreds) of annotations (trees) in the same run. The package also provides the tools for visualization of annotated phylogenies, calculation of posterior probabilities (prediction) and goodness-of-fit assessment featured in Vega Yon et al. (2021).
This package provides a unified and straightforward interface for performing a variety of meta-analysis methods directly from user data. Users can input a data frame, specify key parameters, and effortlessly execute and compare multiple common meta-analytic models. Designed for immediate usability, the package facilitates transparent, reproducible research without manual implementation of each analytical method. Ideal for researchers aiming for efficiency and reproducibility, it streamlines workflows from data preparation to results interpretation.
Weather indices are formed from weather variables in this package. The users can input any number of weather variables recorded over any number of weeks. This package has no restriction on the number of weeks and weather variables to be taken as input.The details of the method can be seen (i)'Joint effects of weather variables on rice yields by R. Agrawal, R. C. Jain and M. P. Jha in Mausam, vol. 34, pp. 189-194, 1983,<doi:10.54302/mausam.v34i2.2392>,(ii)'Improved weather indices based Bayesian regression model for forecasting crop yield by M. Yeasin, K. N. Singh, A. Lama and B. Gurung in Mausam, vol. 72, pp.879-886, 2021,<doi:10.54302/mausam.v72i4.670>.
Computes asymmetric LD measures (ALD) for multi-allelic genetic data. These measures are identical to the correlation measure (r) for bi-allelic data.
Generate spreadsheet publications that follow best practice guidance from the UK government's Analysis Function, available at <https://analysisfunction.civilservice.gov.uk/policy-store/releasing-statistics-in-spreadsheets/>, with a focus on accessibility. See also the Python package gptables'.
Routines for re-scaling isotope maps using known-origin tissue isotope data, assigning origin of unknown samples, and summarizing and assessing assignment results. Methods are adapted from Wunder (2010, in ISBN:9789048133536) and Vander Zanden, H. B. et al. (2014) <doi:10.1111/2041-210X.12229> as described in Ma, C. et al. (2020) <doi:10.1111/2041-210X.13426>.
Continuous and discrete (count or categorical) estimation of density, probability mass function (p.m.f.) and regression functions are performed using associated kernels. The cross-validation technique and the local Bayesian procedure are also implemented for bandwidth selection.
This package provides a spatiotemporal model that simulates the spread of Ascochyta blight in chickpea fields based on location-specific weather conditions. This model is adapted from a model developed by Diggle et al. (2002) <doi:10.1094/PHYTO.2002.92.10.1110> for simulating the spread of anthracnose in a lupin field.
An implementation of ADPclust clustering procedures (Fast Clustering Using Adaptive Density Peak Detection). The work is built and improved upon the idea of Rodriguez and Laio (2014)<DOI:10.1126/science.1242072>. ADPclust clusters data by finding density peaks in a density-distance plot generated from local multivariate Gaussian density estimation. It includes an automatic centroids selection and parameter optimization algorithm, which finds the number of clusters and cluster centroids by comparing average silhouettes on a grid of testing clustering results; It also includes a user interactive algorithm that allows the user to manually selects cluster centroids from a two dimensional "density-distance plot". Here is the research article associated with this package: "Wang, Xiao-Feng, and Yifan Xu (2015)<DOI:10.1177/0962280215609948> Fast clustering using adaptive density peak detection." Statistical methods in medical research". url: http://smm.sagepub.com/content/early/2015/10/15/0962280215609948.abstract.
An implementation of the additive polynomial (AP) design matrix. It constructs and appends an AP design matrix to a data frame for use with longitudinal data subject to seasonality.
Package that simulates adaptive (multi-arm, multi-stage) clinical trials using adaptive stopping, adaptive arm dropping, and/or adaptive randomisation. Developed as part of the INCEPT (Intensive Care Platform Trial) project (<https://incept.dk/>), primarily supported by a grant from Sygeforsikringen "danmark" (<https://www.sygeforsikring.dk/>).
An interface to the ArcGIS arcpy and arcgis python API <https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/arcgis-api-for-python.htm>. Provides various tools for installing and configuring a Conda environment for accessing ArcGIS geoprocessing functions. Helper functions for manipulating and converting ArcGIS objects from R are also provided.
Make summary tables for descriptive statistics and select explanatory variables automatically in various regression models. Support linear models, generalized linear models and cox-proportional hazard models. Generate publication-ready tables summarizing result of regression analysis and plots. The tables and plots can be exported in "HTML", "pdf('LaTex')", "docx('MS Word')" and "pptx('MS Powerpoint')" documents.