Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Modeling associations between covariates and power spectra of replicated time series using a cepstral-based semiparametric framework. Implements a fast two-stage estimation procedure via Whittle likelihood and multivariate regression.The methodology is based on Li and Dong (2025) <doi:10.1080/10618600.2025.2473936>.
This package performs Correlated Meta-Analysis ('corrmeta') across multiple OMIC scans, accounting for hidden non-independencies between elements of the scans due to overlapping samples, related samples, or other information. For more information about the method, refer to the paper Province MA. (2013) <doi:10.1142/9789814447973_0023>.
Computes p-values using the largest root test using an approximation to the null distribution by Johnstone (2008) <DOI:10.1214/08-AOS605>.
We unify various nonparametric hypothesis testing problems in a framework of permutation testing, enabling hypothesis testing on multi-sample, multidimensional data and contingency tables. Most of the functions available in the R environment to implement permutation tests are single functions constructed for specific test problems; to facilitate the use of the package, the package encapsulates similar tests in a categorized manner, greatly improving ease of use. We will all provide functions for self-selected permutation scoring methods and self-selected p-value calculation methods (asymptotic, exact, and sampling). For two-sample tests, we will provide mean tests and estimate drift sizes; we will provide tests on variance; we will provide paired-sample tests; we will provide correlation coefficient tests under three measures. For multi-sample problems, we will provide both ordinary and ordered alternative test problems. For multidimensional data, we will implement multivariate means (including ordered alternatives) and multivariate pairwise tests based on four statistics; the components with significant differences are also calculated. For contingency tables, we will perform permutation chi-square test or ordered alternative.
Allows you to connect to data sources across the crypto ecosystem. This data can enable a range of activity such as portfolio tracking, programmatic trading, or industry analysis. The package is described in French (2024) <https://github.com/TrevorFrench/cryptotrackr/wiki>.
This package provides a spatially-aware cell clustering algorithm is provided with cluster significance assessment. It comprises four key modules: spatially-aware cell-gene co-embedding, cell clustering, signature gene identification, and cluster significant assessment. More details can be referred to Peng Xie, et al. (2025) <doi:10.1016/j.cell.2025.05.035>.
Random sampling from distributions with user-specified population covariance matrix. Marginal information may be fully specified, for which the package implements the VITA (VIne-To-Anything) algorithm Grønneberg and Foldnes (2017) <doi:10.1007/s11336-017-9569-6>. See also Grønneberg, Foldnes and Marcoulides (2022) <doi:10.18637/jss.v102.i03>. Alternatively, marginal skewness and kurtosis may be specified, for which the package implements the IG (independent generator) and PLSIM (piecewise linear) algorithms, see Foldnes and Olsson (2016) <doi:10.1080/00273171.2015.1133274> and Foldnes and Grønneberg (2021) <doi:10.1080/10705511.2021.1949323>, respectively.
Several causal effects are measured using least squares regressions and basis function approximations. Backward and forward selection methods based on different criteria are used to select the basis functions.
Although many software tools can perform meta-analyses on genetic case-control data, none of these apply to combined case-control and family-based (TDT) studies. This package conducts fixed-effects (with inverse variance weighting) and random-effects [DerSimonian and Laird (1986) <DOI:10.1016/0197-2456(86)90046-2>] meta-analyses on combined genetic data. Specifically, this package implements a fixed-effects model [Kazeem and Farrall (2005) <DOI:10.1046/j.1529-8817.2005.00156.x>] and a random-effects model [Nicodemus (2008) <DOI:10.1186/1471-2105-9-130>] for combined studies.
An algorithm of optimal subset selection, related to Covariance matrices, observation matrices and Response vectors (COR) to select the optimal subsets in distributed estimation. The philosophy of the package is described in Guo G. (2024) <doi:10.1007/s11222-024-10471-z>.
This package provides a very simple syntax for the user to generate custom plot(s) without having to remember complicated ggplot2 syntax. The chartql package uses ggplot2 and manages all the syntax complexities internally. As an example, to generate a bar chart of company sales faceted by product category further faceted by season of the year, we simply write: "CHART bar X category, season Y sales".
Quickly set and summarize contrasts for factors prior to regression analyses. Intended comparisons, baseline conditions, and intercepts can be explicitly set and documented without the user needing to directly manipulate matrices. Reviews and introductions for contrast coding are available in Brehm and Alday (2022)<doi:10.1016/j.jml.2022.104334> and Schad et al. (2020)<doi:10.1016/j.jml.2019.104038>.
Retorna detalhes de dados de CEPs brasileiros, bairros, logradouros e tal. (Returns info of Brazilian postal codes, city names, addresses and so on.).
Conditional graphical lasso estimator is an extension of the graphical lasso proposed to estimate the conditional dependence structure of a set of p response variables given q predictors. This package provides suitable extensions developed to study datasets with censored and/or missing values. Standard conditional graphical lasso is available as a special case. Furthermore, the package provides an integrated set of core routines for visualization, analysis, and simulation of datasets with censored and/or missing values drawn from a Gaussian graphical model. Details about the implemented models can be found in Augugliaro et al. (2023) <doi: 10.18637/jss.v105.i01>, Augugliaro et al. (2020b) <doi: 10.1007/s11222-020-09945-7>, Augugliaro et al. (2020a) <doi: 10.1093/biostatistics/kxy043>, Yin et al. (2001) <doi: 10.1214/11-AOAS494> and Stadler et al. (2012) <doi: 10.1007/s11222-010-9219-7>.
Analyze data from a crossover design using generalized estimation equations (GEE), including carryover effects and various correlation structures based on the Kronecker product. It contains functions for semiparametric estimates of carry-over effects in repeated measures and allows estimation of complex carry-over effects. Related work includes: a) Cruz N.A., Melo O.O., Martinez C.A. (2023). "CrossCarry: An R package for the analysis of data from a crossover design with GEE". <doi:10.48550/arXiv.2304.02440>. b) Cruz N.A., Melo O.O., Martinez C.A. (2023). "A correlation structure for the analysis of Gaussian and non-Gaussian responses in crossover experimental designs with repeated measures". <doi:10.1007/s00362-022-01391-z> and c) Cruz N.A., Melo O.O., Martinez C.A. (2023). "Semiparametric generalized estimating equations for repeated measurements in cross-over designs". <doi:10.1177/09622802231158736>.
This package provides functions for cost-sensitive multi-criteria ensemble selection (CSMES) (as described in De bock et al. (2020) <doi:10.1016/j.ejor.2020.01.052>) for cost-sensitive learning under unknown cost conditions.
Estimation and goodness-of-fit functions for copula-based models of bivariate data with arbitrary distributions (discrete, continuous, mixture of both types). The copula families considered here are the Gaussian, Student, Clayton, Frank, Gumbel, Joe, Plackett, BB1, BB6, BB7,BB8, together with the following non-central squared copula families in Nasri (2020) <doi:10.1016/j.spl.2020.108704>: ncs-gaussian, ncs-clayton, ncs-gumbel, ncs-frank, ncs-joe, and ncs-plackett. For theoretical details, see, e.g., Nasri and Remillard (2023) <arXiv:2301.13408>.
Splits data into Gaussian type clusters using the Cross-Entropy Clustering ('CEC') method. This method allows for the simultaneous use of various types of Gaussian mixture models, for performing the reduction of unnecessary clusters, and for discovering new clusters by splitting them. CEC is based on the work of Spurek, P. and Tabor, J. (2014) <doi:10.1016/j.patcog.2014.03.006>.
Data recorded as paths or trajectories may be suitably described by curves, which are independent of their parametrization. For the space of such curves, the package provides functionalities for reading curves, sampling points on curves, calculating distance between curves and for computing Tukey curve depth of a curve w.r.t. to a bundle of curves. For details see Lafaye De Micheaux, Mozharovskyi, and Vimond (2021) <doi:10.48550/arXiv.1901.00180>.
Enrichment strategies play a critical role in modern clinical trial design, especially as precision medicine advances the focus on patient-specific efficacy. Recent developments in enrichment design have introduced biomarker randomness and accounted for the correlation structure between treatment effect and biomarker, resulting in a two-stage threshold enrichment design. We propose novel two-stage enrichment designs capable of handling two or more continuous biomarkers. See Zhang, F. and Gou, J. (2025). Using multiple biomarkers for patient enrichment in two-stage clinical designs. Technical Report.
Datasets of the International Chess Federation's player ratings and country information analysed in the book Antony Unwin (2024, ISBN:978-0367674007) "Getting (more out of) Graphics".
This package contains functions which can be used to calculate Pesticide Risk Metric values in aquatic environments from concentrations of multiple pesticides with known species sensitive distributions (SSDs). Pesticides provided by this package have all be validated however if the user has their own pesticides with SSD values they can append them to the pesticide_info table to include them in estimates.
This package produces statistical indicators of the impact of migration on the socio-demographic composition of an area. Three measures can be used: ratios, percentages and the Duncan index of dissimilarity. The input data files are assumed to be in an origin-destination matrix format, with each cell representing a flow count between an origin and a destination area. Columns are expected to represent origins, and rows are expected to represent destinations. The first row and column are assumed to contain labels for each area. See Rodriguez-Vignoli and Rowe (2018) <doi:10.1080/00324728.2017.1416155> for technical details.
Modeling under- and over-dispersed count data using extended Poisson process models as in the article Faddy and Smith (2011) <doi:10.18637/jss.v069.i06> .