Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Builds co-occurrence matrices based on spatial raster data. It includes creation of weighted co-occurrence matrices (wecoma) and integrated co-occurrence matrices (incoma; Vadivel et al. (2007) <doi:10.1016/j.patrec.2007.01.004>).
This package implements controlled interrupted time series (CITS) analysis for evaluating interventions in comparative time-series data. The package provides tools for preparing panel time-series datasets, fitting models using generalized least squares (GLS) with optional autoregressiveâ moving-average (ARMA) error structures, and computing fitted values and robust standard errors using cluster-robust variance estimators (CR2). Visualization functions enable clear presentation of estimated effects and counterfactual trajectories following interventions. Background on methods for causal inference in interrupted time series can be found in Linden and Adams (2011) <doi:10.1111/j.1365-2753.2010.01504.x> and Lopez Bernal, Cummins, and Gasparrini (2018) <doi:10.1093/ije/dyy135>.
Agreement of continuously scaled measurements made by two techniques, devices or methods is usually evaluated by the well-established Bland-Altman analysis or plot. Conditional method agreement trees (COAT), proposed by Karapetyan, Zeileis, Henriksen, and Hapfelmeier (2025) <doi:10.1093/jrsssc/qlae077>, embed the Bland-Altman analysis in the framework of recursive partitioning to explore heterogeneous method agreement in dependence of covariates. COAT can also be used to perform a Bland-Altman test for differences in method agreement.
An implementation of the Chrome DevTools Protocol', for controlling a headless Chrome web browser.
Contrast analysis for factorial designs provides an alternative to the traditional ANOVA approach, offering the distinct advantage of testing targeted hypotheses. The foundation of this package is primarily rooted in the works of Rosenthal, Rosnow, and Rubin (2000, ISBN: 978-0521659802) as well as Sedlmeier and Renkewitz (2018, ISBN: 978-3868943214).
Recent developments in modern coexistence theory have advanced our understanding on how species are able to persist and co-occur with other species at varying abundances. However, applying this mathematical framework to empirical data is still challenging, precluding a larger adoption of the theoretical tools developed by empiricists. This package provides a complete toolbox for modelling interaction effects between species, and calculate fitness and niche differences. The functions are flexible, may accept covariates, and different fitting algorithms can be used. A full description of the underlying methods is available in Garcà a-Callejas, D., Godoy, O., and Bartomeus, I. (2020) <doi:10.1111/2041-210X.13443>. Furthermore, the package provides a series of functions to calculate dynamics for stage-structured populations across sites.
This package provides methods and functions to implement a Recommendation System based on Collaborative Filtering Methodology. See Aggarwal (2016) <doi:10.1007/978-3-319-29659-3> for an overview.
This package provides a set of functions for applying a restricted linear algebra to the analysis of count-based data. See the accompanying preprint manuscript: "Normalizing need not be the norm: count-based math for analyzing single-cell data" Church et al (2022) <doi:10.1101/2022.06.01.494334> This tool is specifically designed to analyze count matrices from single cell RNA sequencing assays. The tools implement several count-based approaches for standard steps in single-cell RNA-seq analysis, including scoring genes and cells, comparing cells and clustering, calculating differential gene expression, and several methods for rank reduction. There are many opportunities for further optimization that may prove useful in the analysis of other data. We provide the source code freely available at <https://github.com/shchurch/countland> and encourage users and developers to fork the code for their own purposes.
Finds single- and two-arm designs using stochastic curtailment, as described by Law et al. (2022) <doi:10.1080/10543406.2021.2009498> and Law et al. (2021) <doi:10.1002/pst.2067> respectively. Designs can be single-stage or multi-stage. Non-stochastic curtailment is possible as a special case. Desired error-rates, maximum sample size and lower and upper anticipated response rates are inputted and suitable designs are returned with operating characteristics. Stopping boundaries and visualisations are also available. The package can find designs using other approaches, for example designs by Simon (1989) <doi:10.1016/0197-2456(89)90015-9> and Mander and Thompson (2010) <doi:10.1016/j.cct.2010.07.008>. Other features: compare and visualise designs using a weighted sum of expected sample sizes under the null and alternative hypotheses and maximum sample size; visualise any binary outcome design.
Set chunk hooks for R Markdown documents <https://rmarkdown.rstudio.com/>, and improve user experience. For example, change units of figure sizes, benchmark chunks, and number lines on code blocks.
Helps automate Quarto website creation for small academic groups. Builds a database-like structure of people, projects and publications, linking them together with a string-based ID system. Then, provides functions to automate production of clean markdown for these structures, and in-built CSS formatting using CSS flexbox.
Utilities that support the usage of pyDarwin (<https://certara.github.io/pyDarwin/>) for ease of setup and execution of a machine learning based pharmacometric model search with Certara's Non-Linear Mixed Effects (NLME) modeling engine.
Images are cropped to a circle with a transparent background. The function takes a vector of images, either local or from a link, and circle crops the image. Paths to the cropped image are returned for plotting with ggplot2'. Also includes cropping to a hexagon, heart, parallelogram, and square.
These experimental expression data (5 leukemic CLL B-lymphocyte of aggressive form from GSE39411', <doi:10.1073/pnas.1211130110>), after B-cell receptor stimulation, are used as examples by packages such as the Cascade one, a modeling tool allowing gene selection, reverse engineering, and prediction in cascade networks. Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014) <doi:10.1093/bioinformatics/btt705>.
Package to analyze the clinical utility of a biomarker. It provides the clinical utility curve, clinical utility table, efficacy of a biomarker, clinical efficacy curve and tests to compare efficacy between markers.
ClickHouse (<https://clickhouse.com/>) is an open-source, high performance columnar OLAP (online analytical processing of queries) database management system for real-time analytics using SQL. This DBI backend relies on the ClickHouse HTTP interface and support HTTPS protocol.
This package provides a Bayesian meta-analysis method for studying cross-phenotype genetic associations. It uses summary-level data across multiple phenotypes to simultaneously measure the evidence of aggregate-level pleiotropic association and estimate an optimal subset of traits associated with the risk locus. CPBayes is based on a spike and slab prior. The methodology is available from: A Majumdar, T Haldar, S Bhattacharya, JS Witte (2018) <doi:10.1371/journal.pgen.1007139>.
An investigative tool designed to help users visualize correlations between variables in their datasets. This package aims to provide an easy and effective way to explore and visualize these correlations, making it easier to interpret and communicate results.
This package provides functions to create contour-enhanced forest plots for meta-analysis, supporting binary outcomes (e.g., odds ratios, risk ratios), continuous outcomes (e.g., correlations), and prevalence estimates. Includes options for prediction intervals, customized colors, study labeling, and contour shading to highlight regions of statistical significance. Based on metafor and ggplot2'.
This package provides a header only, C++ interface to R with enhancements over cpp11'. Enforces copy-on-write semantics consistent with R behavior. Offers native support for ALTREP objects, UTF-8 string handling, modern C++11 features and idioms, and reduced memory requirements. Allows for vendoring, making it useful for restricted environments. Compared to cpp11', it adds support for converting C++ maps to R lists, Roxygen documentation directly in C++ code, proper handling of matrix attributes, support for nullable external pointers, bidirectional copy of complex number types, flexibility in type conversions, use of nullable pointers, and various performance optimizations.
Implementation of models to analyse compositional microbiome time series taking into account the interaction between groups of bacteria. The models implemented are described in Creus-Martà et al (2018, ISBN:978-84-09-07541-6), Creus-Martà et al (2021) <doi:10.1155/2021/9951817> and Creus-Martà et al (2022) <doi:10.1155/2022/4907527>.
This package provides a flexible interface for interacting with Large Language Model ('LLM') providers including OpenAI', Groq', Anthropic', DeepSeek', DashScope', Gemini', Grok and GitHub Models'. Supports both synchronous and asynchronous chat-completion APIs, with features such as retry logic, dynamic model selection, customizable parameters, and multi-message conversation handling. Designed to streamline integration with state-of-the-art LLM services across multiple platforms.
An algorithm for identifying candidate driver combinations in cancer. CRSO is based on a theoretical model of cancer in which a cancer rule is defined to be a collection of two or more events (i.e., alterations) that are minimally sufficient to cause cancer. A cancer rule set is a set of cancer rules that collectively are assumed to account for all of ways to cause cancer in the population. In CRSO every event is designated explicitly as a passenger or driver within each patient. Each event is associated with a patient-specific, event-specific passenger penalty, reflecting how unlikely the event would have happened by chance, i.e., as a passenger. CRSO evaluates each rule set by assigning all samples to a rule in the rule set, or to the null rule, and then calculating the total statistical penalty from all unassigned event. CRSO uses a three phase procedure find the best rule set of fixed size K for a range of Ks. A core rule set is then identified from among the best rule sets of size K as the rule set that best balances rule set size and statistical penalty. Users should consult the crso vignette for an example walk through of a full CRSO run. The full description, of the CRSO algorithm is presented in: Klein MI, Cannataro V, Townsend J, Stern DF and Zhao H. "Identifying combinations of cancer driver in individual patients." BioRxiv 674234 [Preprint]. June 19, 2019. <doi:10.1101/674234>. Please cite this article if you use crso'.
This package provides functions and a workflow to easily and powerfully calculating specificity, sensitivity and ROC curves of biomarkers combinations. Allows to rank and select multi-markers signatures as well as to find the best performing sub-signatures, now also from single-cell RNA-seq datasets. The method used was first published as a Shiny app and described in Mazzara et al. (2017) <doi:10.1038/srep45477> and further described in Bombaci & Rossi (2019) <doi:10.1007/978-1-4939-9164-8_16>, and widely expanded as a package as presented in the bioRxiv pre print Ferrari et al. <doi:10.1101/2022.01.17.476603>.