Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fits a pseudo Cox proprotional hazards model when survival times are missing for control groups.
Enables DBI compliant packages to integrate with the RStudio connections pane, and the pins package. It automates the display of schemata, tables, views, as well as the preview of the table's top 1000 records.
Different approaches to censored or truncated regression with conditional heteroscedasticity are provided. First, continuous distributions can be used for the (right and/or left censored or truncated) response with separate linear predictors for the mean and variance. Second, cumulative link models for ordinal data (obtained by interval-censoring continuous data) can be employed for heteroscedastic extended logistic regression (HXLR). In the latter type of models, the intercepts depend on the thresholds that define the intervals. Infrastructure for working with censored or truncated normal, logistic, and Student-t distributions, i.e., d/p/q/r functions and distributions3 objects.
This package provides different datasets parsed from Drugbank <https://www.drugbank.ca/covid-19> database using dbparser package. It is a smaller version from dbdataset package. It contains only information about COVID-19 possible treatment.
This package provides tools for creating and visualizing statistical process control charts. Control charts are used for monitoring measurement processes, such as those occurring in manufacturing. The objective is to monitor the history of such processes and flag outlying measurements: out-of-control signals. Montgomery, D. (2009, ISBN:978-0-470-16992-6) contains an extensive discussion of the methodology.
One way to choose the number of principal components is via the reconstruction error. This package is designed mainly for this purpose. Graphical representation is also supported, plus some other principal component analysis related functions. References include: Jolliffe I.T. (2002). Principal Component Analysis. <doi:10.1007/b98835> and Mardia K.V., Kent J.T. and Bibby J.M. (1979). Multivariate Analysis. ISBN: 978-0124712522. London: Academic Press.
This package provides a collection of easy-to-use functions for creating visualizations of compositional data using ggplot2'. Includes support for common plotting techniques in compositional data analysis.
Utilizes spatial association marginal contributions derived from spatial stratified heterogeneity to capture the degree of correlation between spatial patterns.
This package provides comprehensive tools for extracting and analyzing scientific content from PDF documents, including citation extraction, reference matching, text analysis, and bibliometric indicators. Supports multi-column PDF layouts, CrossRef API <https://www.crossref.org/documentation/retrieve-metadata/rest-api/> integration, and advanced citation parsing.
Concatenation of multiple sequence alignments based on a correspondence table that can be edited in Excel <doi:10.5281/zenodo.5130603>.
The CloudOS client library for R makes it easy to interact with CloudOS in the R environment for analysis.
Conditional mixture model fitted via EM (Expectation Maximization) algorithm for model-based clustering, including parsimonious procedure, optimal conditional order exploration, and visualization.
Get description of images from Clarifai API. For more information, see <http://clarifai.com>. Clarifai uses a large deep learning cloud to come up with descriptive labels of the things in an image. It also provides how confident it is about each of the labels.
This package provides routines for fitting Cox models by likelihood based boosting for single event survival data with right censoring or in the presence of competing risks. The methodology is described in Binder and Schumacher (2008) <doi:10.1186/1471-2105-9-14> and Binder et al. (2009) <doi:10.1093/bioinformatics/btp088>.
Connect and pull data from the CJA API, which powers CJA Workspace <https://github.com/AdobeDocs/cja-apis>. The package was developed with the analyst in mind and will continue to be developed with the guiding principles of iterative, repeatable, timely analysis. New features are actively being developed and we value your feedback and contribution to the process.
This package implements weighted estimation in Cox regression as proposed by Schemper, Wakounig and Heinze (Statistics in Medicine, 2009, <doi:10.1002/sim.3623>) and as described in Dunkler, Ploner, Schemper and Heinze (Journal of Statistical Software, 2018, <doi:10.18637/jss.v084.i02>). Weighted Cox regression provides unbiased average hazard ratio estimates also in case of non-proportional hazards. Approximated generalized concordance probability an effect size measure for clear-cut decisions can be obtained. The package provides options to estimate time-dependent effects conveniently by including interactions of covariates with arbitrary functions of time, with or without making use of the weighting option.
Enumerate orientation-consistent directed networks from an undirected or partially directed skeleton, detect feedback loops, summarize topology, and simulate node dynamics via stochastic differential equations.
Allows printing of character strings as messages/warnings/etc. with ASCII animals, including cats, cows, frogs, chickens, ghosts, and more.
This package provides a standardized and reproducible framework for characterizing and classifying discrete color classes from digital images of biological organisms. The package automatically determines the presence or absence of 10 human-visible color categories (black, blue, brown, green, grey, orange, purple, red, white, yellow) using a biologically-inspired Color Look-Up Table (CLUT) that partitions HSV color space. Supports both fully automated and semi-automated (interactive) workflows with complete provenance tracking for reproducibility. Pre-processes images using the recolorize package (Weller et al. 2024 <doi:10.1111/ele.14378>) for spatial-color binning, and integrates with pavo (Maia et al. 2019 <doi:10.1111/2041-210X.13174>) for color pattern geometry statistics. Designed for high-throughput analysis and seamless integration with downstream evolutionary analyses.
Draws systematic samples from a population that follows linear trend. The function returns a matrix comprising of the required samples as its column vectors. The samples produced are highly efficient and the inter sampling variance is minimum. The scheme will be useful in various field like Bioinformatics where the samples are expensive and must be precise in reflecting the population by possessing least sampling variance.
Process command line arguments, as part of a data analysis workflow. command makes it easier to construct a workflow consisting of lots of small, self-contained scripts, all run from a Makefile or shell script. The aim is a workflow that is modular, transparent, and reliable.
This package provides methods for the import/export and automated analysis of concept maps and concept landscapes (sets of concept maps).
While data from randomized experiments remain the gold standard for causal inference, estimation of causal estimands from observational data is possible through various confounding adjustment methods. However, the challenge of unmeasured confounding remains a concern in causal inference, where failure to account for unmeasured confounders can lead to biased estimates of causal estimands. Sensitivity analysis within the framework of causal inference can help adjust for possible unmeasured confounding. In `causens`, three main methods are implemented: adjustment via sensitivity functions (Brumback, Hernán, Haneuse, and Robins (2004) <doi:10.1002/sim.1657> and Li, Shen, Wu, and Li (2011) <doi:10.1093/aje/kwr096>), Bayesian parametric modelling and Monte Carlo approaches (McCandless, Lawrence C and Gustafson, Paul (2017) <doi:10.1002/sim.7298>).
This package provides a collection of functions to pre-process amplification curve data from polymerase chain reaction (PCR) or isothermal amplification reactions. Contains functions to normalize and baseline amplification curves, to detect both the start and end of an amplification reaction, several smoothers (e.g., LOWESS, moving average, cubic splines, Savitzky-Golay), a function to detect false positive amplification reactions and a function to determine the amplification efficiency. Quantification point (Cq) methods include the first (FDM) and second approximate derivative maximum (SDM) methods (calculated by a 5-point-stencil) and the cycle threshold method. Data sets of experimental nucleic acid amplification systems ('VideoScan HCU', capillary convective PCR (ccPCR)) and commercial systems are included. Amplification curves were generated by helicase dependent amplification (HDA), ccPCR or PCR. As detection system intercalating dyes (EvaGreen, SYBR Green) and hydrolysis probes (TaqMan) were used. For more information see: Roediger et al. (2015) <doi:10.1093/bioinformatics/btv205>.