Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Cobb's maximum likelihood method for cusp-catastrophe modeling (Grasman, van der Maas, and Wagenmakers (2009) <doi:10.18637/jss.v032.i08>; Cobb (1981), Behavioral Science, 26(1), 75-78). Includes a cusp() function for model fitting, and several utility functions for plotting, and for comparing the model to linear regression and logistic curve models.
Returns an edit-distance based clusterization of an input vector of strings. Each cluster will contain a set of strings w/ small mutual edit-distance (e.g., Levenshtein, optimum-sequence-alignment, Damerau-Levenshtein), as computed by stringdist::stringdist(). The set of all mutual edit-distances is then used by graph algorithms (from package igraph') to single out subsets of high connectivity.
This package contains the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) data set.
Shiny app for creating interactive consort flow diagrams and other types of flow diagrams, see Moher, Schulz and Altman (2001) <doi:10.1016/S0140-6736(00)04337-3>.
This data package contains monthly climate data in Germany, it can be used for heating and cooling calculations (external temperature, heating / cooling days, solar radiation).
It is designed to streamline the process of calculating complete annual growth rates with user-friendly functions and robust algorithms. It enables researchers and analysts to effortlessly generate precise growth rate estimates for their data. For method details see, Sharma, M.K.(2013) <https://www.indianjournals.com/ijor.aspx?target=ijor:jfl&volume=26&issue=1and2&article=018>. It offers a comprehensive suite of functions and customisable parameters. Equipped to handle varying complexities in data structures. It empowers users to uncover insightful growth dynamics and make informed decisions.
Clustering method to cluster both effects curves, through quantile regression coefficient modeling, and curves in functional data analysis. Sottile G. and Adelfio G. (2019) <doi:10.1007/s00180-018-0817-8>.
Copula-based imputation methods: parametric and nonparametric algorithms for missing multivariate data through conditional copulas.
This package performs multiple comparison procedures on curve observations among different treatment groups. The methods are applicable in a variety of situations (such as independent groups with equal or unequal sample sizes, or repeated measures) by using parametric bootstrap. References to these procedures can be found at Konietschke, Gel, and Brunner (2014) <doi:10.1090/conm/622/12431> and Westfall (2011) <doi:10.1080/10543406.2011.607751>.
Data manipulation for Coupled Model Intercomparison Project, Phase-6 (CMIP6) hydroclimatic data. The files are archived in the Federated Research Data Repository (FRDR) (Rajulapati et al, 2024, <doi:10.20383/103.0829>). The data set is described in Abdelmoaty et al. (2025, <doi:10.1038/s41597-025-04396-z>).
This package provides functions and command-line user interface to generate allocation sequence by covariate-adaptive randomization for clinical trials. The package currently supports six covariate-adaptive randomization procedures. Three hypothesis testing methods that are valid and robust under covariate-adaptive randomization are also available in the package to facilitate the inference for treatment effect under the included randomization procedures. Additionally, the package provides comprehensive and efficient tools to allow one to evaluate and compare the performance of randomization procedures and tests based on various criteria. See Ma W, Ye X, Tu F, and Hu F (2023) <doi: 10.18637/jss.v107.i02> for details.
It is devoted to Cramer-von Mises goodness-of-fit tests. It implements three statistical methods based on Cramer-von Mises statistics to estimate and test a regression model.
Given response y, continuous predictor x, and covariate matrix, the relationship between E(y) and x is estimated with a shape constrained regression spline. Function outputs fits and various types of inference.
This package implements non-parametric analyses for clustered binary and multinomial data. The elements of the cluster are assumed exchangeable, and identical joint distribution (also known as marginal compatibility, or reproducibility) is assumed for clusters of different sizes. A trend test based on stochastic ordering is implemented. Szabo A, George EO. (2010) <doi:10.1093/biomet/asp077>; George EO, Cheon K, Yuan Y, Szabo A (2016) <doi:10.1093/biomet/asw009>.
Implementation of the d/p/q/r family of functions for a continuous analog to the standard discrete beta-binomial with continuous size parameter and continuous support with x in [0, size + 1].
Create self-contained SVG information cards with embedded Google Fonts', shields-style badges, and custom logos. Cards are fully portable SVG files ideal for dashboards, reports, and web applications. Includes functions to export cards to PNG format and display them in R Markdown and Quarto documents.
Calculates permutation tests that can be powerful for comparing two groups with some positive but many zero responses (see Follmann, Fay, and Proschan <DOI:10.1111/j.1541-0420.2008.01131.x>).
Correlates of protection (CoP) and correlates of risk (CoR) study the immune biomarkers associated with an infectious disease outcome, e.g. COVID or HIV-1 infection. This package contains shared functions for analyzing CoP and CoR, including bootstrapping procedures, competing risk estimation, and bootstrapping marginalized risks.
Eases the use of ecotoxicological effect models. Can simulate common toxicokinetic-toxicodynamic (TK/TD) models such as General Unified Threshold models of Survival (GUTS) and Lemna. It can derive effects and effect profiles (EPx) from scenarios. It supports the use of tidyr workflows employing the pipe symbol. Time-consuming tasks can be parallelized.
This package provides color palettes based on crayon colors since the early 1900s. Colors are based on various crayon colors, sets, and promotional palettes, most of which can be found at <https://en.wikipedia.org/wiki/List_of_Crayola_crayon_colors>. All palettes are discrete palettes and are not necessarily color-blind friendly. Provides scales for ggplot2 for discrete coloring.
This package provides functions for reading in and manipulating CRU TS3.21: Climatic Research Unit (CRU) Time-Series (TS) Version 3.21 data.
This package provides a toolkit for making use of credentials mediated by Posit Connect'. It handles the details of communicating with the Connect API correctly, OAuth token caching, and refresh behaviour.
Download imagery tiles to a standard cache and load the data into raster objects. Facilities for AWS terrain <https://registry.opendata.aws/terrain-tiles/> terrain and Mapbox <https://www.mapbox.com/> servers are provided.
Uses a calibrated model fusion approach to optimally combine multiple surrogate markers. Specifically, two initial estimates of optimal composite scores of the markers are obtained; the optimal calibrated combination of the two estimated scores is then constructed which ensures both validity of the final combined score and optimality with respect to the proportion of treatment effect explained (PTE) by the final combined score. The primary function, pte.estimate.multiple(), estimates the PTE of the identified combination of multiple surrogate markers. Details are described in Wang et al (2022) <doi:10.1111/biom.13677>. A tutorial for the package is available at <https://www.laylaparast.com/cmfsurrogate> and a Shiny App is available at <https://parastlab.shinyapps.io/CMFsurrogateApp/>.