Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Univariate and multivariate temporal and spatial diversity indices, rank abundance curves, and community stability measures. The functions implement measures that are either explicitly temporal and include the option to calculate them over multiple replicates, or spatial and include the option to calculate them over multiple time points. Functions fall into five categories: static diversity indices, temporal diversity indices, spatial diversity indices, rank abundance curves, and community stability measures. The diversity indices are temporal and spatial analogs to traditional diversity indices. Specifically, the package includes functions to calculate community richness, evenness and diversity at a given point in space and time. In addition, it contains functions to calculate species turnover, mean rank shifts, and lags in community similarity between two time points. Details of the methods are available in Hallett et al. (2016) <doi:10.1111/2041-210X.12569> and Avolio et al. (2019) <doi:10.1002/ecs2.2881>.
Formal psychological models of categorization and learning, independently-replicated data sets against which to test them, and simulation archives.
Implementation of conceptual properties norming studies, including estimates of CPNs parameters with their corresponding variances and estimates for the sampling process, and a sampling property function based on a modified empirical distribution from the original data.
Calculation of various common and less common comfort indices such as predicted mean vote or the two node model. Converts physical variables such as relative to absolute humidity and evaluates the performance of comfort indices.
API Client for the Climate Hazards Center CHIRPS and CHIRTS'. The CHIRPS data is a quasi-global (50°S â 50°N) high-resolution (0.05 arc-degrees) rainfall data set, which incorporates satellite imagery and in-situ station data to create gridded rainfall time series for trend analysis and seasonal drought monitoring. CHIRTS is a quasi-global (60°S â 70°N), high-resolution data set of daily maximum and minimum temperatures. For more details on CHIRPS and CHIRTS data please visit its official home page <https://www.chc.ucsb.edu/data>.
This package provides easy and consistent time conversion for public health purposes. The time conversion functions provided here are between date, ISO week, ISO yearweek, ISO year, calendar month/year, season, season week.
Explore calcium (Ca) and phosphate (Pi) homeostasis with two novel Shiny apps, building upon on a previously published mathematical model written in C, to ensure efficient computations. The underlying model is accessible here <https://pubmed.ncbi.nlm.nih.gov/28747359/)>. The first application explores the fundamentals of Ca-Pi homeostasis, while the second provides interactive case studies for in-depth exploration of the topic, thereby seeking to foster student engagement and an integrative understanding of Ca-Pi regulation.
Estimation and goodness-of-fit functions for copula-based models of bivariate data with arbitrary distributions (discrete, continuous, mixture of both types). The copula families considered here are the Gaussian, Student, Clayton, Frank, Gumbel, Joe, Plackett, BB1, BB6, BB7,BB8, together with the following non-central squared copula families in Nasri (2020) <doi:10.1016/j.spl.2020.108704>: ncs-gaussian, ncs-clayton, ncs-gumbel, ncs-frank, ncs-joe, and ncs-plackett. For theoretical details, see, e.g., Nasri and Remillard (2023) <arXiv:2301.13408>.
Load and analyze updated time series worldwide data of reported cases for the Novel Coronavirus Disease (COVID-19) from different sources, including the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE) data repository <https://github.com/CSSEGISandData/COVID-19>, "Our World in Data" <https://github.com/owid/> among several others. The datasets reporting the COVID-19 cases are available in two main modalities, as a time series sequences and aggregated data for the last day with greater spatial resolution. Several analysis, visualization and modelling functions are available in the package that will allow the user to compute and visualize total number of cases, total number of changes and growth rate globally or for an specific geographical location, while at the same time generating models using these trends; generate interactive visualizations and generate Susceptible-Infected-Recovered (SIR) model for the disease spread.
Builds co-occurrence matrices based on spatial raster data. It includes creation of weighted co-occurrence matrices (wecoma) and integrated co-occurrence matrices (incoma; Vadivel et al. (2007) <doi:10.1016/j.patrec.2007.01.004>).
Data analysis often requires coding, especially when data are collected through interviews, observations, or questionnaires. As a result, code counting and data preparation are essential steps in the analysis process. Analysts may need to count the codes in a text (Tokenization, counting of pre-established codes, computing the co-occurrence matrix by line) and prepare the data (e.g., min-max normalization, Z-score, robust scaling, Box-Cox transformation, and non-parametric bootstrap). For the Box-Cox transformation (Box & Cox, 1964, <https://www.jstor.org/stable/2984418>), the optimal Lambda is determined using the log-likelihood method. Non-parametric bootstrap involves randomly sampling data with replacement. Two random number generators are also integrated: a Lehmer congruential generator for uniform distribution and a Box-Muller generator for normal distribution. Package for educational purposes.
This package implements lasso and ridge regression for dichotomised outcomes (<doi:10.1080/02664763.2023.2233057>), i.e., numerical outcomes that were transformed to binary outcomes. Such artificial binary outcomes indicate whether an underlying measurement is greater than a threshold.
Extends the did package to improve efficiency and handling of unbalanced panel data. Bellego, Benatia, and Dortet-Bernadet (2024), "The Chained Difference-in-Differences", Journal of Econometrics, <doi:10.1016/j.jeconom.2024.105783>.
CEU (CEU San Pablo University) Mass Mediator is an on-line tool for aiding researchers in performing metabolite annotation. cmmr (CEU Mass Mediator RESTful API) allows for programmatic access in R: batch search, batch advanced search, MS/MS (tandem mass spectrometry) search, etc. For more information about the API Endpoint please go to <https://github.com/YaoxiangLi/cmmr>.
Color values in R are often represented as strings of hexadecimal colors or named colors. This package offers fast conversion of these color representations to either an array of red/green/blue/alpha values or to the packed integer format used in native raster objects. Functions for conversion are also exported at the C level for use in other packages. This fast conversion of colors is implemented using an order-preserving minimal perfect hash derived from Majewski et al (1996) "A Family of Perfect Hashing Methods" <doi:10.1093/comjnl/39.6.547>.
This package provides functions to produce some circular plots for circular data, in a height- or area-proportional manner. They include bar plots, smooth density plots, stacked dot plots, histograms, multi-class stacked smooth density plots, and multi-class stacked histograms.
Estimation, prediction, and simulation of nonstationary Gaussian process with modular covariate-based covariance functions. Sources of nonstationarity, such as spatial mean, variance, geometric anisotropy, smoothness, and nugget, can be considered based on spatial characteristics. An induced compact-supported nonstationary covariance function is provided, enabling fast and memory-efficient computations when handling densely sampled domains.
It fits linear regression models for censored spatial data. It provides different estimation methods as the SAEM (Stochastic Approximation of Expectation Maximization) algorithm and seminaive that uses Kriging prediction to estimate the response at censored locations and predict new values at unknown locations. It also offers graphical tools for assessing the fitted model. More details can be found in Ordonez et al. (2018) <doi:10.1016/j.spasta.2017.12.001>.
This package provides an R interface to the Copernicus Marine Service for downloading and accessing marine data. Integrates with the official copernicusmarine Python library through reticulate'. Requires Python 3.7+ and a free Copernicus Marine account. See <https://marine.copernicus.eu/> and <https://pypi.org/project/copernicusmarine/> for more information.
This package implements Cragg-Donald (1993) <doi:10.1017/S0266466600007519> and Stock and Yogo (2005) <doi:10.1017/CBO9780511614491.006> tests for weak instruments in R.
CUR/CX decomposition factorizes a matrix into two factor matrices and Multidimensional CX Decomposition factorizes a tensor into a core tensor and some factor matrices. See the reference section of GitHub README.md <https://github.com/rikenbit/ccTensor>, for details of the methods.
Interacting with binary files can be difficult because R's types are a subset of what is generally supported by C'. This package provides a suite of functions for reading and writing binary data (with files, connections, and raw vectors) using C type descriptions. These functions convert data between C types and R types while checking for values outside the type limits, NA values, etc.
This package provides a collection of functions to generate a large variety of structures in high dimensions. These data structures are useful for testing, validating, and improving algorithms used in dimensionality reduction, clustering, machine learning, and visualization.
Offers tools to estimate the climate representativeness of reference polygons and quantifies its transformation under future climate change scenarios. Approaches described in Mingarro and Lobo (2018) <doi:10.32800/abc.2018.41.0333> and Mingarro and Lobo (2022) <doi:10.1017/S037689292100014X>.