Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Multidimensional scaling models and methods for the visualization and analysis of asymmetric proximity data. An asymmetric data matrix has the same number of rows and columns, and these rows and columns refer to the same set of objects. At least some elements in the upper-triangle are different from the corresponding elements in the lower triangle. An example of an asymmetric matrix is a student migration table, where the rows correspond to the countries of origin of the students and the columns to the destination countries. This package provides algorithms for three multidimensional scaling models, the slide-vector model, a scaling model with unique dimensions and the asymscal model.Furthermore, some other procedures, such as a heat map for skew-symmetric data, and the decomposition of asymmetry are also provided for the exploratory analysis of asymmetric tables.
Finds, prioritizes and deletes erroneous taxa in a phylogenetic tree. This package calculates scores for taxa in a tree. Higher score means the taxon is more erroneous. If the score is zero for a taxon, the taxon is not erroneous. This package also can remove all erroneous taxa automatically by iterating score calculation and pruning taxa with the highest score.
Solving high-dimensional double sparse linear regression via an iterative hard thresholding algorithm. Furthermore, the method is extended to jointly estimate multiple graphical models. For more details, please see <https://www.jmlr.org/papers/v25/23-0653.html> and <doi:10.48550/arXiv.2503.18722>.
Assess whether and how a specific continuous or categorical exposure affects the outcome of interest through one- or multi-dimensional mediators using an adaptive bootstrap (AB) approach. The AB method allows to make inference for composite null hypotheses of no mediation effect, providing valid type I error control and thus optimizes statistical power. For more technical details, refer to He, Song and Xu (2024) <doi:10.1093/jrsssb/qkad129>.
This package provides functions to estimate and interpret the alpha-NOMINATE ideal point model developed in Carroll et al. (2013, <doi:10.1111/ajps.12029>). alpha-NOMINATE extends traditional spatial voting frameworks by allowing for a mixture of Gaussian and quadratic utility functions, providing flexibility in modeling political actors preferences. The package uses Markov Chain Monte Carlo (MCMC) methods for parameter estimation, supporting robust inference about individuals ideological positions and the shape of their utility functions. It also contains functions to simulate data from the model and to calculate the probability of a vote passing given the ideal points of the legislators/voters and the estimated location of the choice alternatives.
Flexible multi-environment trials analysis via MCMC method for Additive Main Effects and Multiplicative Model (AMMI) for continuous data. Biplot with the averages and regions of confidence can be generated. The chains run in parallel on Linux systems and run serially on Windows.
This package provides a dynamic time warping (DTW) algorithm for stratigraphic alignment, translated into R from the original published MATLAB code by Hay et al. (2019) <doi:10.1130/G46019.1>. The DTW algorithm incorporates two geologically relevant parameters (g and edge) for augmenting the typical DTW cost matrix, allowing for a range of sedimentologic and chronologic conditions to be explored, as well as the generation of an alignment library (as opposed to a single alignment solution). The g parameter relates to the relative sediment accumulation rate between the two time series records, while the edge parameter relates to the amount of total shared time between the records. Note that this algorithm is used for all DTW alignments in the Align Shiny application, detailed in Hagen et al. (in review).
This package provides basic functionalities to calculate the position of satellites given a known state vector. The package includes implementations of the SGP4 and SDP4 simplified perturbation models to propagate orbital state vectors, as well as utilities to read TLE files and convert coordinates between different frames of reference. Several of the functionalities of the package (including the high-precision numerical orbit propagator) require the coefficients and data included in the asteRiskData package, available in a drat repository. To install this data package, run install.packages("asteRiskData", repos="https://rafael-ayala.github.io/drat/")'. Felix R. Hoots, Ronald L. Roehrich and T.S. Kelso (1988) <https://celestrak.org/NORAD/documentation/spacetrk.pdf>. David Vallado, Paul Crawford, Richard Hujsak and T.S. Kelso (2012) <doi:10.2514/6.2006-6753>. Felix R. Hoots, Paul W. Schumacher Jr. and Robert A. Glover (2014) <doi:10.2514/1.9161>.
With appRiori <doi:10.1177/25152459241293110>, users upload the research variables and the app guides them to the best set of comparisons fitting the hypotheses, for both main and interaction effects. Through a graphical explanation and empirical examples on reproducible data, it is shown that it is possible to understand both the logic behind the planned comparisons and the way to interpret them when a model is tested.
Colour palettes and a ggplot2 theme to follow the UK Government Analysis Function best practice guidance for producing data visualisations, available at <https://analysisfunction.civilservice.gov.uk/policy-store/data-visualisation-charts/>. Includes continuous and discrete colour and fill scales, as well as a ggplot2 theme.
This package provides functions required to classify subjects within camera trap field data. The package can handle both images and videos. The authors recommend a two-step approach using Microsoft's MegaDector model and then a second model trained on the classes of interest.
This package provides automated visual inference of residual plots using computer vision models, facilitating diagnostic checks for classical normal linear regression models.
This package provides tools for constructing a matched design with multiple comparison groups. Further specifications of refined covariate balance restriction and exact match on covariate can be imposed. Matches are approximately optimal in the sense that the cost of the solution is at most twice the optimal cost, Crama and Spieksma (1992) <doi:10.1016/0377-2217(92)90078-N>, Karmakar, Small and Rosenbaum (2019) <doi:10.1080/10618600.2019.1584900>.
This package implements the scenario analysis proposed by Antolin-Diaz, Petrella and Rubio-Ramirez (2021) "Structural scenario analysis with SVARs" <doi:10.1016/j.jmoneco.2020.06.001>.
Fits a model to adjust and consider additional variations in three dimensions of age groups, time, and space on residuals excluded from a prediction model that have residual such as: linear regression, mixed model and so on. Details are given in Foreman et al. (2015) <doi:10.1186/1478-7954-10-1>.
An interface to container functionality in Microsoft's Azure cloud: <https://azure.microsoft.com/en-us/products/category/containers/>. Manage Azure Container Instance (ACI), Azure Container Registry (ACR) and Azure Kubernetes Service (AKS) resources, push and pull images, and deploy services. On the client side, lightweight shells to the docker', docker-compose', kubectl and helm commandline tools are provided. Part of the AzureR family of packages.
Download air quality and meteorological information of Chile from the National Air Quality System (S.I.N.C.A.)<https://sinca.mma.gob.cl/> dependent on the Ministry of the Environment and the Meteorological Directorate of Chile (D.M.C.)<https://www.meteochile.gob.cl/> dependent on the Directorate General of Civil Aeronautics.
Assists the evaluation of whether and where to focus code optimization, using Amdahl's law and visual aids based on line profiling. Amdahl's profiler organizes profiling output files (including memory profiling) in a visually appealing way. It is meant to help to balance development vs. execution time by helping to identify the most promising sections of code to optimize and projecting potential gains. The package is an addition to R's standard profiling tools and is not a wrapper for them.
This package provides function declarations and inline function definitions that facilitate communication between R and the Armadillo C++ library for linear algebra and scientific computing. This implementation is derived from Vargas Sepulveda and Schneider Malamud (2024) <doi:10.1016/j.softx.2025.102087>.
This package provides functions are provided for defining animated, interactive data visualizations in R code, and rendering on a web page. The 2018 Journal of Computational and Graphical Statistics paper, <doi:10.1080/10618600.2018.1513367> describes the concepts implemented.
This package performs Box-Cox power transformation for different purposes, graphical approaches, assesses the success of the transformation via tests and plots, computes mean and confidence interval for back transformed data.
Data on Asylum and Resettlement for the UK, provided by the Home Office <https://www.gov.uk/government/statistical-data-sets/immigration-system-statistics-data-tables>.
This package provides methods to analyse spatial units in archaeology from the relationships between refitting fragmented objects scattered in these units (e.g. stratigraphic layers). Graphs are used to model archaeological observations. The package is mainly based on the igraph package for graph analysis. Functions can: 1) create, manipulate, visualise, and simulate fragmentation graphs, 2) measure the cohesion and admixture of archaeological spatial units, and 3) characterise the topology of a specific set of refitting relationships. A series of published empirical datasets is included. Documentation about archeofrag is provided by a vignette and by the accompanying scientific papers: Plutniak (2021, Journal of Archaeological Science, <doi:10.1016/j.jas.2021.105501>) and Plutniak (2022, Journal of Open Source Software, <doi:10.21105/joss.04335>). This package is complemented by the archeofrag.gui R package, a companion GUI application available at <https://analytics.huma-num.fr/Sebastien.Plutniak/archeofrag/>.
Confidence curves, confidence intervals and p-values for correlation coefficients corrected for attenuation due to measurement error. Implements the methods described in Moss (2019, <arxiv:1911.01576>).