Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Amends errors, augments data and aids analysis of John Snow's map of the 1854 London cholera outbreak.
This package implements the cross-validation methodology from Pein and Shah (2021) <arXiv:2112.03220>. Can be customised by providing different cross-validation criteria, estimators for the change-point locations and local parameters, and freely chosen folds. Pre-implemented estimators and criteria are available. It also includes our own implementation of the COPPS procedure <doi:10.1214/19-AOS1814>.
Implementation of the CNAIM standard in R. Contains a series of algorithms which determine the probability of failure, consequences of failure and monetary risk associated with electricity distribution companies assets such as transformers and cables. Results are visualized in an easy-to-understand risk matrix.
This package provides an extension to the purrr family of mapping functions to apply a function to each combination of elements in a list of inputs. Also includes functions for automatically detecting output type in mapping functions, finding every combination of elements of lists or rows of data frames, and applying multiple models to multiple subsets of a dataset.
Detects a variety of coordinated actions on social media and outputs the network of coordinated users along with related information.
This package provides functions for performing experimental comparisons of algorithms using adequate sample sizes for power and accuracy. Implements the methodology originally presented in Campelo and Takahashi (2019) <doi:10.1007/s10732-018-9396-7> for the comparison of two algorithms, and later generalised in Campelo and Wanner (Submitted, 2019) <arxiv:1908.01720>.
This package provides a curated list of copepod-fish ecological interaction records. It contains the taxonomy of the copepod and the fish and the publication from which the information was obtained. This database contains only marine and brackish water fish species. It excludes fish species that inhabit only freshwater.
Simulate plasma caffeine concentrations using population pharmacokinetic model described in Lee, Kim, Perera, McLachlan and Bae (2015) <doi:10.1007/s00431-015-2581-x>.
Monitor and trace changes in clustering solutions of accumulating datasets at successive time points. The clusters can adopt External and Internal transition at succeeding time points. The External transitions comprise of Survived, Merged, Split, Disappeared, and newly Emerged candidates. In contrast, Internal transition includes changes in location and cohesion of the survived clusters. The package uses MONIC framework developed by Spiliopoulou, Ntoutsi, Theodoridis, and Schult (2006)<doi:10.1145/1150402.1150491> .
Biotechnology in spatial omics has advanced rapidly over the past few years, enhancing both throughput and resolution. However, existing annotation pipelines in spatial omics predominantly rely on clustering methods, lacking the flexibility to integrate extensive annotated information from single-cell RNA sequencing (scRNA-seq) due to discrepancies in spatial resolutions, species, or modalities. Here we introduce the CAESAR suite, an open-source software package that provides image-based spatial co-embedding of locations and genomic features. It uniquely transfers labels from scRNA-seq reference, enabling the annotation of spatial omics datasets across different technologies, resolutions, species, and modalities, based on the conserved relationship between signature genes and cells/locations at an appropriate level of granularity. Notably, CAESAR enriches location-level pathways, allowing for the detection of gradual biological pathway activation within spatially defined domain types. More details on the methods related to our paper currently under submission. A full reference to the paper will be provided in future versions once the paper is published.
This package provides a systematic biology tool was developed to identify cell infiltration via Individualized Cell-Cell interaction network. CITMIC first constructed a weighted cell interaction network through integrating Cell-target interaction information, molecular function data from Gene Ontology (GO) database and gene transcriptomic data in specific sample, and then, it used a network propagation algorithm on the network to identify cell infiltration for the sample. Ultimately, cell infiltration in the patient dataset was obtained by normalizing the centrality scores of the cells.
Estimates latent class vector-autoregressive models via EM algorithm on time-series data for model-based clustering and classification. Includes model selection criteria for selecting the number of lags and clusters.
This package provides tools that allow developers to write functions for cross-validation with minimal programming effort and assist users with model selection.
Assembles two or more gene copies from short-read Next-Generation Sequencing data. Works best when there are only two gene copies and read length >=250 base pairs. High and relatively even coverage are important.
Includes binning categorical variables into lesser number of categories based on t-test, converting categorical variables into continuous features using the mean of the response variable for the respective categories, understanding the relationship between the response variable and predictor variables using data transformations.
This package provides tools to process and analyze chest expansion using 3D marker data from motion capture systems. Includes functions for data processing, marker position adjustment, volume calculation using convex hulls, and visualization in 2D and 3D. Barber et al. (1996) <doi:10.1145/235815.235821>. TAMIYA Hiroyuki et al. (2021) <doi:10.1038/s41598-021-01033-8>.
An implementation of the statistical methods commonly used for advanced composite materials in aerospace applications. This package focuses on calculating basis values (lower tolerance bounds) for material strength properties, as well as performing the associated diagnostic tests. This package provides functions for calculating basis values assuming several different distributions, as well as providing functions for non-parametric methods of computing basis values. Functions are also provided for testing the hypothesis that there is no difference between strength and modulus data from an alternate sample and that from a "qualification" or "baseline" sample. For a discussion of these statistical methods and their use, see the Composite Materials Handbook, Volume 1 (2012, ISBN: 978-0-7680-7811-4). Additional details about this package are available in the paper by Kloppenborg (2020, <doi:10.21105/joss.02265>).
Chromosome files in the Fasta format usually contain large sequences like human genome. Sometimes users have to split these chromosomes into different files according to their chromosome number. The chromseq can help to handle this. So the selected chromosome sequence can be used for downstream analysis like motif finding. Howard Y. Chang(2019) <doi:10.1038/s41587-019-0206-z>.
This package provides functions to access data from public RESTful APIs including Nager.Date', World Bank API', and REST Countries API', retrieving real-time or historical data related to China, such as holidays, economic indicators, and international demographic and geopolitical indicators. Additionally, the package includes one of the largest curated collections of open datasets focused on China and Hong Kong, covering topics such as air quality, demographics, input-output tables, epidemiology, political structure, names, and social indicators. The package supports reproducible research and teaching by integrating reliable international APIs and structured datasets from public, academic, and government sources. For more information on the APIs, see: Nager.Date <https://date.nager.at/Api>, World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>, and REST Countries API <https://restcountries.com/>.
Implementation of Tobit type I and type II families for censored regression using the mgcv package, based on methods detailed in Woods (2016) <doi:10.1080/01621459.2016.1180986>.
This package provides a set of functions for conducting cognitive diagnostic computerized adaptive testing applications (Chen, 2009) <DOI:10.1007/s11336-009-9123-2>). It includes different item selection rules such us the global discrimination index (Kaplan, de la Torre, and Barrada (2015) <DOI:10.1177/0146621614554650>) and the nonparametric selection method (Chang, Chiu, and Tsai (2019) <DOI:10.1177/0146621618813113>), as well as several stopping rules. Functions for generating item banks and responses are also provided. To guide item bank calibration, model comparison at the item level can be conducted using the two-step likelihood ratio test statistic by Sorrel, de la Torre, Abad and Olea (2017) <DOI:10.1027/1614-2241/a000131>.
This package provides tools for fitting the copCAR (Hughes, 2015) <DOI:10.1080/10618600.2014.948178> regression model for discrete areal data. Three types of estimation are supported (continuous extension, composite marginal likelihood, and distributional transform), for three types of outcomes (Bernoulli, negative binomial, and Poisson).
An implementation of double generalized linear model (DGLM) building with variable selection procedures and handling of interaction terms and other complex situations. We also provide a method of handling convergence issues within the dglm() function. The package offers a simulation function for generating simulated data for testing purposes and utilizes the forward stepwise variable selection procedure in model-building. It also provides a new custom bootstrap function for mean and standard deviation estimation and functions for building crossplots and squareplots from a data set.
Given response y, continuous predictor x, and covariate matrix, the relationship between E(y) and x is estimated with a shape constrained regression spline. Function outputs fits and various types of inference.