Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to perform comparative causal mediation analysis to compare the mediation effects of different treatments via a common mediator. Results contain the estimates and confidence intervals for the two comparative causal mediation analysis estimands, as well as the ATE and ACME for each treatment. Functions provided in the package will automatically assess the comparative causal mediation analysis scope conditions (i.e. for each comparative causal mediation estimand, a numerator and denominator that are both estimated with the desired statistical significance and of the same sign). Results will be returned for each comparative causal mediation estimand only if scope conditions are met for it. See details in Bansak(2020)<doi:10.1017/pan.2019.31>.
This package contains a function, also called cchs', that calculates Estimator III of Borgan et al (2000), <DOI:10.1023/A:1009661900674>. This estimator is for fitting a Cox proportional hazards model to data from a case-cohort study where the subcohort was selected by stratified simple random sampling.
Calculation of standard deviation scores and percentiles adduced from different standards (WHO, UK, Germany, Italy, China, etc). Also, references for laboratory values in children and adults are available, e.g., serum lipids, iron-related blood parameters, IGF, liver enzymes. See package documentation for full list.
This package provides a method for pattern discovery in weighted graphs as outlined in Thistlethwaite et al. (2021) <doi:10.1371/journal.pcbi.1008550>. Two use cases are achieved: 1) Given a weighted graph and a subset of its nodes, do the nodes show significant connectedness? 2) Given a weighted graph and two subsets of its nodes, are the subsets close neighbors or distant?
Wrangle country data more effectively and quickly. This package contains functions to easily identify and convert country names, download country information, merge country data from different sources, and make quick world maps.
Mapas terrestres con topologias simplificadas. Estos mapas no tienen precision geodesica, por lo que aplica el DFL-83 de 1979 de la Republica de Chile y se consideran referenciales sin validez legal. No se incluyen los territorios antarticos y bajo ningun evento estos mapas significan que exista una cesion u ocupacion de territorios soberanos en contra del Derecho Internacional por parte de Chile. Esta paquete esta documentado intencionalmente en castellano asciificado para que funcione sin problema en diferentes plataformas. (Terrestrial maps with simplified toplogies. These maps lack geodesic precision, therefore DFL-83 1979 of the Republic of Chile applies and are considered to have no legal validity. Antartic territories are excluded and under no event these maps mean there is a cession or occupation of sovereign territories against International Laws from Chile. This package was intentionally documented in asciified spanish to make it work without problem on different platforms.).
This package provides methods for analyzing (cell) motion in two or three dimensions. Available measures include displacement, confinement ratio, autocorrelation, straightness, turning angle, and fractal dimension. Measures can be applied to entire tracks, steps, or subtracks with varying length. While the methodology has been developed for cell trajectory analysis, it is applicable to anything that moves including animals, people, or vehicles. Some of the methodology implemented in this packages was described by: Beauchemin, Dixit, and Perelson (2007) <doi:10.4049/jimmunol.178.9.5505>, Beltman, Maree, and de Boer (2009) <doi:10.1038/nri2638>, Gneiting and Schlather (2004) <doi:10.1137/S0036144501394387>, Mokhtari, Mech, Zitzmann, Hasenberg, Gunzer, and Figge (2013) <doi:10.1371/journal.pone.0080808>, Moreau, Lemaitre, Terriac, Azar, Piel, Lennon-Dumenil, and Bousso (2012) <doi:10.1016/j.immuni.2012.05.014>, Textor, Peixoto, Henrickson, Sinn, von Andrian, and Westermann (2011) <doi:10.1073/pnas.1102288108>, Textor, Sinn, and de Boer (2013) <doi:10.1186/1471-2105-14-S6-S10>, Textor, Henrickson, Mandl, von Andrian, Westermann, de Boer, and Beltman (2014) <doi:10.1371/journal.pcbi.1003752>.
In metabolic flux experiments tracer molecules (often glucose containing labelled carbon) are incorporated in compounds measured using mass spectrometry. The mass isotopologue distributions of these compounds needs to be corrected for natural abundance of labelled carbon and other effects, which are specific on the compound and ionization technique applied. This package provides functions to correct such effects in gas chromatography atmospheric pressure chemical ionization mass spectrometry analyses.
The issue of overlapping regions in multidimensional data arises when different classes or clusters share similar feature representations, making it challenging to delineate distinct boundaries between them accurately. This package provides methods for detecting and visualizing these overlapping regions using partitional clustering techniques based on nearest neighbor distances.
Example data sets to run the example problems from causal inference textbooks. Currently, contains data sets for Huntington-Klein, Nick (2021 and 2025) "The Effect" <https://theeffectbook.net>, first and second edition, Cunningham, Scott (2021 and 2025, ISBN-13: 978-0-300-25168-5) "Causal Inference: The Mixtape", and Hernán, Miguel and James Robins (2020) "Causal Inference: What If" <https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/>.
This package provides functions for computing and visualizing generalized canonical discriminant analyses and canonical correlation analysis for a multivariate linear model. Traditional canonical discriminant analysis is restricted to a one-way MANOVA design and is equivalent to canonical correlation analysis between a set of quantitative response variables and a set of dummy variables coded from the factor variable. The candisc package generalizes this to higher-way MANOVA designs for all factors in a multivariate linear model, computing canonical scores and vectors for each term. The graphic functions provide low-rank (1D, 2D, 3D) visualizations of terms in an mlm via the plot.candisc and heplot.candisc methods. Related plots are now provided for canonical correlation analysis when all predictors are quantitative. Methods for linear discriminant analysis are now included.
In randomized controlled trial (RCT), balancing covariate is often one of the most important concern. CARM package provides functions to balance the covariates and generate allocation sequence by covariate-adjusted Adaptive Randomization via Mahalanobis-distance (ARM) for RCT. About what ARM is and how it works please see Y. Qin, Y. Li, W. Ma, H. Yang, and F. Hu (2024). "Adaptive randomization via Mahalanobis distance" Statistica Sinica. <doi:10.5705/ss.202020.0440>. In addition, the package is also suitable for the randomization process of multi-arm trials. For details, please see Yang H, Qin Y, Wang F, et al. (2023). "Balancing covariates in multi-arm trials via adaptive randomization" Computational Statistics & Data Analysis.<doi:10.1016/j.csda.2022.107642>.
Doubly robust methods for evaluating surrogate markers as outlined in: Agniel D, Hejblum BP, Thiebaut R & Parast L (2022). "Doubly robust evaluation of high-dimensional surrogate markers", Biostatistics <doi:10.1093/biostatistics/kxac020>. You can use these methods to determine how much of the overall treatment effect is explained by a (possibly high-dimensional) set of surrogate markers.
This package provides a comprehensive framework for batch effect diagnostics, harmonization, and post-harmonization downstream analysis. Features include interactive visualization tools, robust statistical tests, and a range of harmonization techniques. Additionally, ComBatFamQC enables the creation of life-span age trend plots with estimated age-adjusted centiles and facilitates the generation of covariate-corrected residuals for analytical purposes. Methods for harmonization are based on approaches described in Johnson et al., (2007) <doi:10.1093/biostatistics/kxj037>, Beer et al., (2020) <doi:10.1016/j.neuroimage.2020.117129>, Pomponio et al., (2020) <doi:10.1016/j.neuroimage.2019.116450>, and Chen et al., (2021) <doi:10.1002/hbm.25688>.
Data from statistical agencies and other institutions often need to be protected before they can be published. This package can be used to perturb statistical tables in a consistent way. The main idea is to add - at the micro data level - a record key for each unit. Based on these keys, for any cell in a statistical table a cell key is computed as a function on the record keys contributing to a specific cell. Values that are added to the cell in order to perturb it are derived from a lookup-table that maps values of cell keys to specific perturbation values. The theoretical basis for the methods implemented can be found in Thompson, Broadfoot and Elazar (2013) <https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2013/Topic_1_ABS.pdf> which was extended and enhanced by Giessing and Tent (2019) <https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2019/mtg1/SDC2019_S2_Germany_Giessing_Tent_AD.pdf>.
Compare double-precision floating point vectors using relative differences. All equality operations are calculated using cpp11'.
Patients Mental Health (MH) status, Substance Use (SU) status, and concurrent MH/SU status in the American/Canadian Healthcare Administrative Databases can be identified. The detection is based on given parameters of interest by clinicians including the list of plausible ICD MH/SU codes (3/4/5 characters), the required number of visits of hospital for MH/SU , the required number of visits of service physicians for MH/SU, and the maximum time span within MH visits, within SU visits, and, between MH and SU visits. Methods are described in: Khan S <https://pubmed.ncbi.nlm.nih.gov/29044442/>, Keen C, et al. (2021) <doi:10.1111/add.15580>, Lavergne MR, et al. (2022) <doi:10.1186/s12913-022-07759-z>, Casillas, S M, et al. (2022) <doi:10.1016/j.abrep.2022.100464>, CIHI (2022) <https://www.cihi.ca/en>, CDC (2024) <https://www.cdc.gov>, WHO (2019) <https://icd.who.int/en>.
Detects a variety of coordinated actions on social media and outputs the network of coordinated users along with related information.
This package provides tools for creating and visualizing statistical process control charts. Control charts are used for monitoring measurement processes, such as those occurring in manufacturing. The objective is to monitor the history of such processes and flag outlying measurements: out-of-control signals. Montgomery, D. (2009, ISBN:978-0-470-16992-6) contains an extensive discussion of the methodology.
Providing a set of functions to easily generate and iterate complex networks. The functions can be used to generate realistic networks with a wide range of different clustering, density, and average path length. For more information consult research articles by Amiyaal Ilany and Erol Akcay (2016) <doi:10.1093/icb/icw068> and Ilany and Erol Akcay (2016) <doi:10.1101/026120>, which have inspired many methods in this package.
We provide a computationally efficient and robust implementation of the recently proposed C-JAMP (Copula-based Joint Analysis of Multiple Phenotypes) method (Konigorski et al., 2019, submitted). C-JAMP allows estimating and testing the association of one or multiple predictors on multiple outcomes in a joint model, and is implemented here with a focus on large-scale genome-wide association studies with two phenotypes. The use of copula functions allows modeling a wide range of multivariate dependencies between the phenotypes, and previous results are supporting that C-JAMP can increase the power of association studies to identify associated genetic variants in comparison to existing methods (Konigorski, Yilmaz, Pischon, 2016, <DOI:10.1186/s12919-016-0045-6>; Konigorski, Yilmaz, Bull, 2014, <DOI:10.1186/1753-6561-8-S1-S72>). In addition to the C-JAMP functions, functions are available to generate genetic and phenotypic data, to compute the minor allele frequency (MAF) of genetic markers, and to estimate the phenotypic variance explained by genetic markers.
This package implements a class of univariate and multivariate spatio-temporal generalised linear mixed models for areal unit data, with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation. The response variable can be binomial, Gaussian, or Poisson, but for some models only the binomial and Poisson data likelihoods are available. The spatio-temporal autocorrelation is modelled by random effects, which are assigned conditional autoregressive (CAR) style prior distributions. A number of different random effects structures are available, including models similar to Rushworth et al. (2014) <doi:10.1016/j.sste.2014.05.001>. Full details are given in the vignette accompanying this package. The creation and development of this package was supported by the Engineering and Physical Sciences Research Council (EPSRC) grants EP/J017442/1 and EP/T004878/1 and the Medical Research Council (MRC) grant MR/L022184/1.
This package provides a set of functions that helps you to generate descriptive statistics based on the variable types.
Estimates a lasso penalized precision matrix via the blockwise coordinate descent (BCD). This package is a simple wrapper around the popular glasso package that extends and enhances its capabilities. These enhancements include built-in cross validation and visualizations. See Friedman et al (2008) <doi:10.1093/biostatistics/kxm045> for details regarding the estimation method.