Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides an array of statistical models common in causal inference such as standardization, IP weighting, propensity matching, outcome regression, and doubly-robust estimators. Estimates of the average treatment effects from each model are given with the standard error and a 95% Wald confidence interval (Hernan, Robins (2020) <https://miguelhernan.org/whatifbook/>).
Conditioned Latin hypercube sampling, as published by Minasny and McBratney (2006) <DOI:10.1016/j.cageo.2005.12.009>. This method proposes to stratify sampling in presence of ancillary data. An extension of this method, which propose to associate a cost to each individual and take it into account during the optimisation process, is also proposed (Roudier et al., 2012, <DOI:10.1201/b12728>).
Extends the Cox model to events with more than one causes. Also supports random and fixed effects, tied events, and time-varying variables. Model details are provided in Peng et al. (2018) <doi:10.1509/jmr.14.0643>.
Implementation of two-dimensional (2D) correlation analysis based on the Fourier-transformation approach described by Isao Noda (I. Noda (1993) <DOI:10.1366/0003702934067694>). Additionally there are two plot functions for the resulting correlation matrix: The first one creates colored 2D plots, while the second one generates 3D plots.
This package provides access to the Calcite Design System javascript components via integration with the htmltools and shiny packages. Pre-built and interactive components can be used to generate either static html or interactive web applications. Learn more about the Calcite Design System at <https://developers.arcgis.com/calcite-design-system/>.
Detection of outliers in circular-circular regression models, modifying its and estimating of models parameters.
Use optimal equal-HR method to determine two optimal cutpoints of a continuous predictor that has a U-shaped relationship with survival outcomes based on Cox regression model. The optimal equal-HR method estimates two optimal cut-points that have approximately the same log hazard value based on Cox regression model and divides individuals into different groups according to their HR values.
This package provides a uniform statistical inferential tool in making individualized treatment decisions, which implements the methods of Ma et al. (2017)<DOI:10.1177/0962280214541724> and Guo et al. (2021)<DOI:10.1080/01621459.2020.1865167>. It uses a flexible semiparametric modeling strategy for heterogeneous treatment effect estimation in high-dimensional settings and can gave valid confidence bands. Based on it, one can find the subgroups of patients that benefit from each treatment, thereby making individualized treatment selection.
This package provides a Shiny application to conduct comprehensive analysis of latent means including the examination of group equivalency, propensity score analysis, measurement invariance analysis, and assessment of latent mean differences of equivalent groups with invariant data. Group equivalency and propensity score analyses are implemented using the MatchIt package [Ho et al. (2011) <doi:10.18637/jss.v042.i08>], ensuring robust control for covariates. Structural equation modeling and invariance testing rely heavily on the lavaan package [Rosseel (2012) <doi:10.18637/jss.v048.i02>], providing a flexible and powerful modeling framework. The application also integrates modified functions from Hammack-Brown et al. (2021) <doi:10.1002/hrdq.21452> to support factor ratio testing and the list-and-delete procedure.
Fork of calendR R package to generate ready to print calendars with ggplot2 (see <https://r-coder.com/calendar-plot-r/>) with additional features (backwards compatible). calendRio provides a calendR() function that serves as a drop-in replacement for the upstream version but allows for additional parameters unlocking extra functionality.
This package provides a dashboard supports the usage of cromwell'. Cromwell is a scientific workflow engine for command line users. This package utilizes cromwell REST APIs and provides these convenient functions: timing diagrams for running workflows, cromwell engine status, a tabular workflow list. For more information about cromwell', visit <http://cromwell.readthedocs.io>.
This package provides a collection of functions for top-down exploratory data analysis of spectral data including nuclear magnetic resonance (NMR), infrared (IR), Raman, X-ray fluorescence (XRF) and other similar types of spectroscopy. Includes functions for plotting and inspecting spectra, peak alignment, hierarchical cluster analysis (HCA), principal components analysis (PCA) and model-based clustering. Robust methods appropriate for this type of high-dimensional data are available. ChemoSpec is designed for structured experiments, such as metabolomics investigations, where the samples fall into treatment and control groups. Graphical output is formatted consistently for publication quality plots. ChemoSpec is intended to be very user friendly and to help you get usable results quickly. A vignette covering typical operations is available.
Compute expected shortfall (ES) and Value at Risk (VaR) from a quantile function, distribution function, random number generator, probability density function, or data. ES is also known as Conditional Value at Risk (CVaR). Virtually any continuous distribution can be specified. The functions are vectorized over the arguments. The computations are done directly from the definitions, see e.g. Acerbi and Tasche (2002) <doi:10.1111/1468-0300.00091>. Some support for GARCH models is provided, as well.
Parameter estimation of regression models with fixed group effects, when the group variable is missing while group-related variables are available. Parametric and semi-parametric approaches described in Marbac et al. (2020) <arXiv:2012.14159> are implemented.
Given a collection of intervals with integer start and end positions, find recurrently targeted regions and estimate the significance of finding. Randomization is implemented by parallel methods, either using local host machines, or submitting grid engine jobs.
Flexible univariate count models based on renewal processes. The models may include covariates and can be specified with familiar formula syntax as in glm() and package flexsurv'. The methodology is described by Kharrat et all (2019) <doi:10.18637/jss.v090.i13> (included as vignette Countr_guide in the package).
Formal psychological models of categorization and learning, independently-replicated data sets against which to test them, and simulation archives.
This package provides authentication for Shiny applications using Amazon Cognito ( <https://aws.amazon.com/es/cognito/>).
Extend cxxfunction by saving the dynamic shared objects for reusing across R sessions.
Set of functions to import COVID-19 pandemic data into R. The Brazilian COVID-19 data, obtained from the official Brazilian repository at <https://covid.saude.gov.br/>, is available at the country, region, state, and city levels. The package also downloads world-level COVID-19 data from Johns Hopkins University's repository. COVID-19 data is available from the start of follow-up until to May 5, 2023, when the World Health Organization (WHO) declared an end to the Public Health Emergency of International Concern (PHEIC) for COVID-19.
Images are cropped to a circle with a transparent background. The function takes a vector of images, either local or from a link, and circle crops the image. Paths to the cropped image are returned for plotting with ggplot2'. Also includes cropping to a hexagon, heart, parallelogram, and square.
This package provides a set of tools for evaluating clustering robustness using proportion of ambiguously clustered pairs (Senbabaoglu et al. (2014) <doi:10.1038/srep06207>), as well as similarity across methods and method stability using element-centric clustering comparison (Gates et al. (2019) <doi:10.1038/s41598-019-44892-y>). Additionally, this package enables stability-based parameter assessment for graph-based clustering pipelines typical in single-cell data analysis.
Fit Cox proportional hazards models containing both fixed and random effects. The random effects can have a general form, of which familial interactions (a "kinship" matrix) is a particular special case. Note that the simplest case of a mixed effects Cox model, i.e. a single random per-group intercept, is also called a "frailty" model. The approach is based on Ripatti and Palmgren, Biometrics 2002.
An interactive document on the topic of classification tree analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://kartikeyab.shinyapps.io/CTShiny/>.