Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The reliability of clusters is estimated using random projections. A set of stability measures is provided to assess the reliability of the clusters discovered by a generic clustering algorithm. The stability measures are taylored to high dimensional data (e.g. DNA microarray data) (Valentini, G (2005), <doi:10.1093/bioinformatics/bti817>.
Calculate the confidence interval and p value for change in C-statistic. The adjusted C-statistic is calculated by using formula as "Somers Dxy rank correlation"/2+0.5. The confidence interval was calculated by using the bootstrap method. The p value was calculated by using the Z testing method. Please refer to the article of Peter Ganz et al. (2016) <doi:10.1001/jama.2016.5951>.
Calculating crude sequence ratio, adjusted sequence ratio and confidence intervals using data mapped to the Observational Medical Outcomes Partnership Common Data Model.
This package provides methods for difference-in-differences with a continuous treatment and staggered treatment adoption. Includes estimation of treatment effects and causal responses as a function of the dose, event studies indexed by length of exposure to the treatment, and aggregation into overall average effects. Uniform inference procedures are included, along with both parametric and nonparametric models for treatment effects. The methods are based on Callaway, Goodman-Bacon, and Sant'Anna (2025) <doi:10.48550/arXiv.2107.02637>.
Estimate, assess, test, and study linear, nonlinear, hierarchical and multigroup structural equation models using composite-based approaches and procedures, including estimation techniques such as partial least squares path modeling (PLS-PM) and its derivatives (PLSc, ordPLSc, robustPLSc), generalized structured component analysis (GSCA), generalized structured component analysis with uniqueness terms (GSCAm), generalized canonical correlation analysis (GCCA), principal component analysis (PCA), factor score regression (FSR) using sum score, regression or Bartlett scores (including bias correction using Croonâ s approach), as well as several tests and typical postestimation procedures (e.g., verify admissibility of the estimates, assess the model fit, test the model fit etc.).
This package provides a modified boxplot with a new fence coefficient determined by Lin et al. (2025). The traditional fence coefficient k=1.5 in Tukey's boxplot is replaced by a coefficient based on Chauvenet's criterion, as described in their formula (9). The new boxplot can be implemented in base R with function chau_boxplot(), and in ggplot2 with function geom_chau_boxplot().
This package provides a large number of measurements generate count data. This is a statistical data type that only assumes non-negative integer values and is generated by counting. Typically, counting data can be found in biomedical applications, such as the analysis of DNA double-strand breaks. The number of DNA double-strand breaks can be counted in individual cells using various bioanalytical methods. For diagnostic applications, it is relevant to record the distribution of the number data in order to determine their biomedical significance (Roediger, S. et al., 2018. Journal of Laboratory and Precision Medicine. <doi:10.21037/jlpm.2018.04.10>). The software offers functions for a comprehensive automated evaluation of distribution models of count data. In addition to programmatic interaction, a graphical user interface (web server) is included, which enables fast and interactive data-scientific analyses. The user is supported in selecting the most suitable counting distribution for his own data set.
This package provides a new method for identification of clusters of genomic regions within chromosomes. Primarily, it is used for calling clusters of cis-regulatory elements (COREs). CREAM uses genome-wide maps of genomic regions in the tissue or cell type of interest, such as those generated from chromatin-based assays including DNaseI, ATAC or ChIP-Seq. CREAM considers proximity of the elements within chromosomes of a given sample to identify COREs in the following steps: 1) It identifies window size or the maximum allowed distance between the elements within each CORE, 2) It identifies number of elements which should be clustered as a CORE, 3) It calls COREs, 4) It filters the COREs with lowest order which does not pass the threshold considered in the approach.
Partitions data points (variables) into communities/clusters, similar to clustering algorithms such as k-means and hierarchical clustering. This package implements a clustering algorithm based on a new metric CORD, defined for high-dimensional parametric or semiparametric distributions. For more details see Bunea et al. (2020), Annals of Statistics <doi:10.1214/18-AOS1794>.
Statistical summary of STRUCTURE output. STRUCTURE is a K-means clustering method for inferring population structure and assigning individuals to populations using genetic data. Pritchard JK, Stephens M, Donnelly PJ (2000) <DOI:10.1093/genetics/155.2.945>. <https://web.stanford.edu/group/pritchardlab/structure.html>.
Uses the CMS application programming interface <https://dnav.cms.gov/api/healthdata> to provide users databases containing yearly Medicare reimbursement rates in the United States. Data can be acquired for the entire United States or only for specific localities. Currently, support is only provided for the Medicare Physician Fee Schedule, but support will be expanded for other CMS databases in future versions.
This package provides a covariate-augmented overdispersed Poisson factor model is proposed to jointly perform a high-dimensional Poisson factor analysis and estimate a large coefficient matrix for overdispersed count data. More details can be referred to Liu et al. (2024) <doi:10.1093/biomtc/ujae031>.
Provided are Computational methods for Immune Cell-type Subsets, including:(1) DCQ (Digital Cell Quantifier) to infer global dynamic changes in immune cell quantities within a complex tissue; and (2) VoCAL (Variation of Cell-type Abundance Loci) a deconvolution-based method that utilizes transcriptome data to infer the quantities of immune-cell types, and then uses these quantitative traits to uncover the underlying DNA loci.
This package provides a flexible, extendable representation of an ecological community and a range of functions for analysis and visualisation, focusing on food web, body mass and numerical abundance data. Allows inter-web comparisons such as examining changes in community structure over environmental, temporal or spatial gradients.
Geometric circle fitting with Levenberg-Marquardt (a, b, R), Levenberg-Marquardt reduced (a, b), Landau, Spath and Chernov-Lesort. Algebraic circle fitting with Taubin, Kasa, Pratt and Fitzgibbon-Pilu-Fisher. Geometric ellipse fitting with ellipse LMG (geometric parameters) and conic LMA (algebraic parameters). Algebraic ellipse fitting with Fitzgibbon-Pilu-Fisher and Taubin.
The concept of cause-deleted life expectancy improvement is statistic designed to quantify the increase in life expectancy if a certain cause of death is removed. See Adamic, P. (2015) (<https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2689352>).
Domain mean estimation with monotonicity or block monotone constraints. See Xu X, Meyer MC and Opsomer JD (2021)<doi:10.1016/j.jspi.2021.02.004> for more details.
Comparison of two ROC curves through the methodology proposed by Ana C. Braga.
This package implements Dirichlet multinomial modeling of relative abundance data using functionality provided by the Stan software. The purpose of this package is to provide a user friendly way to interface with Stan that is suitable for those new to modeling. For more regarding the modeling mathematics and computational techniques we use see our publication in Molecular Ecology Resources titled Dirichlet multinomial modeling outperforms alternatives for analysis of ecological count data (Harrison et al. 2020 <doi:10.1111/1755-0998.13128>).
Streamline the management, analysis, and visualization of CORINE Land Cover data. Addresses challenges associated with its classification system and related styles, such as color mappings and descriptive labels.
The primary function makeCPMSampler() generates a sampler function which performs the correlated pseudo-marginal method of Deligiannidis, Doucet and Pitt (2017) <arXiv:1511.04992>. If the rho= argument of makeCPMSampler() is set to 0, then the generated sampler function performs the original pseudo-marginal method of Andrieu and Roberts (2009) <DOI:10.1214/07-AOS574>. The sampler function is constructed with the user's choice of prior, parameter proposal distribution, and the likelihood approximation scheme. Note that this algorithm is not automatically tuned--each one of these arguments must be carefully chosen.
This package provides a tool that implements the clustering algorithms from mothur (Schloss PD et al. (2009) <doi:10.1128/AEM.01541-09>). clustur make use of the cluster() and make.shared() command from mothur'. Our cluster() function has five different algorithms implemented: OptiClust', furthest', nearest', average', and weighted'. OptiClust is an optimized clustering method for Operational Taxonomic Units, and you can learn more here, (Westcott SL, Schloss PD (2017) <doi:10.1128/mspheredirect.00073-17>). The make.shared() command is always applied at the end of the clustering command. This functionality allows us to generate and create clustering and abundance data efficiently.
This package provides a chess program which allows the user to create a game, add moves, check for legal moves and game result, plot the board, take back, read and write FEN (Forsythâ Edwards Notation). A basic chess engine based on minimax is implemented.
Causal Distillation Tree (CDT) is a novel machine learning method for estimating interpretable subgroups with heterogeneous treatment effects. CDT allows researchers to fit any machine learning model (or metalearner) to estimate heterogeneous treatment effects for each individual, and then "distills" these predicted heterogeneous treatment effects into interpretable subgroups by fitting an ordinary decision tree to predict the previously-estimated heterogeneous treatment effects. This package provides tools to estimate causal distillation trees (CDT), as detailed in Huang, Tang, and Kenney (2025) <doi:10.48550/arXiv.2502.07275>.