Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a new methodology for linear regression with both curve response and curve regressors, which is described in Cho, Goude, Brossat and Yao (2013) <doi:10.1080/01621459.2012.722900> and (2015) <doi:10.1007/978-3-319-18732-7_3>. The key idea behind this methodology is dimension reduction based on a singular value decomposition in a Hilbert space, which reduces the curve regression problem to several scalar linear regression problems.
Developed as a collaboration between Earth lab and the North Central Climate Adaptation Science Center to help users gain insights from available climate data. Includes tools and instructions for downloading climate data via a USGS API and then organizing those data for visualization and analysis that drive insight. Web interface for USGS API can be found at <http://thredds.northwestknowledge.net:8080/thredds/reacch_climate_CMIP5_aggregated_macav2_catalog.html>.
Create and learn Chain Event Graph (CEG) models using a Bayesian framework. It provides us with a Hierarchical Agglomerative algorithm to search the CEG model space. The package also includes several facilities for visualisations of the objects associated with a CEG. The CEG class can represent a range of relational data types, and supports arbitrary vertex, edge and graph attributes. A Chain Event Graph is a tree-based graphical model that provides a powerful graphical interface through which domain experts can easily translate a process into sequences of observed events using plain language. CEGs have been a useful class of graphical model especially to capture context-specific conditional independences. References: Collazo R, Gorgen C, Smith J. Chain Event Graph. CRC Press, ISBN 9781498729604, 2018 (forthcoming); and Barday LM, Collazo RA, Smith JQ, Thwaites PA, Nicholson AE. The Dynamic Chain Event Graph. Electronic Journal of Statistics, 9 (2) 2130-2169 <doi:10.1214/15-EJS1068>.
This package provides igraph objects representing engineering plans of study across multiple disciplines and institutions. The data are intended for use with the CurricularComplexity package (Reeping, 2026) <https://CRAN.R-project.org/package=CurricularComplexity> to support analyses of curricular structure. The package leverages network analysis approaches implemented in igraph (Csárdi et al., 2025) <doi:10.5281/zenodo.7682609>.
Set of tools to compute metrics and indices for climate analysis. The package provides functions to compute extreme indices, evaluate the agreement between models and combine theses models into an ensemble. Multi-model time series of climate indices can be computed either after averaging the 2-D fields from different models provided they share a common grid or by combining time series computed on the model native grid. Indices can be assigned weights and/or combined to construct new indices. The package makes use of some of the methods described in: N. Manubens et al. (2018) <doi:10.1016/j.envsoft.2018.01.018>.
Estimation and inference methods for the continuous threshold expectile regression. It can fit the continuous threshold expectile regression and test the existence of change point, for the paper, "Feipeng Zhang and Qunhua Li (2016). A continuous threshold expectile regression, submitted.".
Interact with Condor from R via SSH connection. Files are first uploaded from user machine to submitter machine, and the job is then submitted from the submitter machine to Condor'. Functions are provided to submit, list, and download Condor jobs from R. Condor is an open source high-throughput computing software framework for distributed parallelization of computationally intensive tasks.
It uses the first-order sensitivity index to measure whether the weights assigned by the creator of the composite indicator match the actual importance of the variables. Moreover, the variance inflation factor is used to reduce the set of correlated variables. In the case of a discrepancy between the importance and the assigned weight, the script determines weights that allow adjustment of the weights to the intended impact of variables. If the optimised weights are unable to reflect the desired importance, the highly correlated variables are reduced, taking into account variance inflation factor. The final outcome of the script is the calculated value of the composite indicator based on optimal weights and a reduced set of variables, and the linear ordering of the analysed objects.
This package performs a series of offline and/or online change-point detection algorithms for 1) univariate mean: <doi:10.1214/20-EJS1710>, <arXiv:2006.03283>; 2) univariate polynomials: <doi:10.1214/21-EJS1963>; 3) univariate and multivariate nonparametric settings: <doi:10.1214/21-EJS1809>, <doi:10.1109/TIT.2021.3130330>; 4) high-dimensional covariances: <doi:10.3150/20-BEJ1249>; 5) high-dimensional networks with and without missing values: <doi:10.1214/20-AOS1953>, <arXiv:2101.05477>, <arXiv:2110.06450>; 6) high-dimensional linear regression models: <arXiv:2010.10410>, <arXiv:2207.12453>; 7) high-dimensional vector autoregressive models: <arXiv:1909.06359>; 8) high-dimensional self exciting point processes: <arXiv:2006.03572>; 9) dependent dynamic nonparametric random dot product graphs: <arXiv:1911.07494>; 10) univariate mean against adversarial attacks: <arXiv:2105.10417>.
Provide the CrossClustering algorithm (Tellaroli et al. (2016) <doi:10.1371/journal.pone.0152333>), which is a partial clustering algorithm that combines the Ward's minimum variance and Complete Linkage algorithms, providing automatic estimation of a suitable number of clusters and identification of outlier elements.
This package provides tools for sampling from a conditional copula density decomposed via Pair-Copula Constructions as C- or D- vine. Here, the vines which can be used for such a sampling are those which sample as first the conditioning variables (when following the sampling algorithms shown in Aas et al. (2009) <DOI:10.1016/j.insmatheco.2007.02.001>). The used sampling algorithm is presented and discussed in Bevacqua et al. (2017) <DOI:10.5194/hess-2016-652>, and it is a modified version of that from Aas et al. (2009) <DOI:10.1016/j.insmatheco.2007.02.001>. A function is available to select the best vine (based on information criteria) among those which allow for such a conditional sampling. The package includes a function to compare scatterplot matrices and pair-dependencies of two multivariate datasets.
This package provides functions for calculating the conditional power for different models in survival time analysis within randomized clinical trials with two different treatments to be compared and survival as an endpoint.
Downloads USDA National Agricultural Statistics Service (NASS) cropscape data for a specified state. Utilities for fips, abbreviation, and name conversion are also provided. Full functionality requires an internet connection, but data sets can be cached for later off-line use.
This package provides a comprehensive high-level package, for composite indicator construction and analysis. It is a "development environment" for composite indicators and scoreboards, which includes utilities for construction (indicator selection, denomination, imputation, data treatment, normalisation, weighting and aggregation) and analysis (multivariate analysis, correlation plotting, short cuts for principal component analysis, global sensitivity analysis, and more). A composite indicator is completely encapsulated inside a single hierarchical list called a "coin". This allows a fast and efficient work flow, as well as making quick copies, testing methodological variations and making comparisons. It also includes many plotting options, both statistical (scatter plots, distribution plots) as well as for presenting results.
This package provides an array of statistical models common in causal inference such as standardization, IP weighting, propensity matching, outcome regression, and doubly-robust estimators. Estimates of the average treatment effects from each model are given with the standard error and a 95% Wald confidence interval (Hernan, Robins (2020) <https://miguelhernan.org/whatifbook/>).
Random sampling from distributions with user-specified population covariance matrix. Marginal information may be fully specified, for which the package implements the VITA (VIne-To-Anything) algorithm Grønneberg and Foldnes (2017) <doi:10.1007/s11336-017-9569-6>. See also Grønneberg, Foldnes and Marcoulides (2022) <doi:10.18637/jss.v102.i03>. Alternatively, marginal skewness and kurtosis may be specified, for which the package implements the IG (independent generator) and PLSIM (piecewise linear) algorithms, see Foldnes and Olsson (2016) <doi:10.1080/00273171.2015.1133274> and Foldnes and Grønneberg (2021) <doi:10.1080/10705511.2021.1949323>, respectively.
This package performs the cross-match test that is an exact, distribution free test of equality of 2 high dimensional multivariate distributions. The input is a distance matrix and the labels of the two groups to be compared, the output is the number of cross-matches and a p-value. See Rosenbaum (2005) <doi:10.1111/j.1467-9868.2005.00513.x>.
This package provides functions supporting the common needs of packages ChemoSpec and ChemoSpec2D'.
Computes conditional multivariate t probabilities, random deviates, and densities. It can also be used to create missing values at random in a dataset, resulting in a missing at random (MAR) mechanism. Inbuilt in the package are the Expectation-Maximization (EM), Monte Carlo EM, and Stochastic EM algorithms for imputation of missing values in datasets assuming the multivariate t distribution. See Kinyanjui, Tamba, Orawo, and Okenye (2020)<doi:10.3233/mas-200493>, and Kinyanjui, Tamba, and Okenye(2021)<http://www.ceser.in/ceserp/index.php/ijamas/article/view/6726/0> for more details.
This package produces descriptive interpretations of confidence intervals. Includes (extensible) support for various test types, specified as sets of interpretations dependent on where the lower and upper confidence limits sit. Provides plotting functions for graphical display of interpretations.
This package provides the source and examples for James P. Howard, II, "Computational Methods for Numerical Analysis with R," <https://jameshoward.us/cmna/>, a book on numerical methods in R.
Stacking rings are tools used to stack pottery in a Kiln. A relatively large group of stacking rings was found in the area of the sanctuary of Dionysos in Miletus in the 1970s. Measurements and additional info is gathered in this package and made available for use by other researchers. The data along with its archaeological context and analysis has been published in "Archäologischer Anzeiger" (2020/1, <doi:10.34780/aa.v0i1.1014>).
Selection of the number of clusters in cluster analysis using stability methods.
This package implements the iterated RMCD method of Cerioli (2010) for multivariate outlier detection via robust Mahalanobis distances. Also provides the finite-sample RMCD method discussed in the paper, as well as the methods provided in Hardin and Rocke (2005) <doi:10.1198/106186005X77685> and Green and Martin (2017) <https://christopherggreen.github.io/papers/hr05_extension.pdf>. See also Chapter 2 of Green (2017) <https://digital.lib.washington.edu/researchworks/handle/1773/40304>.