Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to calculate weights, estimates of changes and corresponding variance estimates for panel data with non-response. Partially overlapping samples are handled. Initially, weights are calculated by linear calibration. By default, the survey package is used for this purpose. It is also possible to use ReGenesees, which can be installed from <https://github.com/DiegoZardetto/ReGenesees>. Variances of linear combinations (changes and averages) and ratios are calculated from a covariance matrix based on residuals according to the calibration model. The methodology was presented at the conference, The Use of R in Official Statistics, and is described in Langsrud (2016) <http://www.revistadestatistica.ro/wp-content/uploads/2016/06/RRS2_2016_A021.pdf>.
This package contains the adaptation of bubblebath from MATLAB', developed by Adam Danz and available through the MATLAB Central File Exchange, and the tools to transform a dataframe of radii and points to plot-able paths.
Data personally collected about the spread of COVID-19 (SARS-COV-2) in Tunisia <https://github.com/MounaBelaid/covid19datatunisia>.
Calculates equitable overload compensation for college instructors based on institutional policies, enrollment thresholds, and regular teaching load limits. Compensation is awarded only for credit hours that exceed the regular load and meet minimum enrollment criteria. When enrollment is below a specified threshold, pay is prorated accordingly. The package prioritizes compensation from high-enrollment courses, or optionally from low-enrollment courses for fairness, depending on user-defined strategy. Includes tools for flexible policy settings, instructor filtering, and produces clean, audit-ready summary tables suitable for payroll and administrative reporting.
Perform censored quantile regression of Huang (2010) <doi:10.1214/09-AOS771>, and restore monotonicity respecting via adaptive interpolation for dynamic regression of Huang (2017) <doi:10.1080/01621459.2016.1149070>. The monotonicity-respecting restoration applies to general dynamic regression models including (uncensored or censored) quantile regression model, additive hazards model, and dynamic survival models of Peng and Huang (2007) <doi:10.1093/biomet/asm058>, among others.
Nonparametric two-sample procedure for comparing survival quantiles.
Git hook scripts are useful for identifying simple issues before submission to code review. captain (hook) is an R package to manage and run git pre-commit hooks.
Filter CpGs based on Intra-class Correlation Coefficients (ICCs) when replicates are available. ICCs are calculated by fitting linear mixed effects models to all samples including the un-replicated samples. Including the large number of un-replicated samples improves ICC estimates dramatically. The method accommodates any replicate design.
This is a function for validating microarray clusters via reproducibility, based on the paper referenced below.
Doubly robust estimation and inference of log hazard ratio under the Cox marginal structural model with informative censoring. An augmented inverse probability weighted estimator that involves 3 working models, one for conditional failure time T, one for conditional censoring time C and one for propensity score. Both models for T and C can depend on both a binary treatment A and additional baseline covariates Z, while the propensity score model only depends on Z. With the help of cross-fitting techniques, achieves the rate-doubly robust property that allows the use of most machine learning or non-parametric methods for all 3 working models, which are not permitted in classic inverse probability weighting or doubly robust estimators. When the proportional hazard assumption is violated, CoxAIPW estimates a causal estimated that is a weighted average of the time-varying log hazard ratio. Reference: Luo, J. (2023). Statistical Robustness - Distributed Linear Regression, Informative Censoring, Causal Inference, and Non-Proportional Hazards [Unpublished doctoral dissertation]. University of California San Diego.; Luo & Xu (2022) <doi:10.48550/arXiv.2206.02296>; Rava (2021) <https://escholarship.org/uc/item/8h1846gs>.
Checks that students have the correct version of R', R packages, RStudio and other dependencies installed, and that the recommended RStudio configuration has been applied.
Includes functions for the analysis of circular data using distributions based on Nonnegative Trigonometric Sums (NNTS). The package includes functions for calculation of densities and distributions, for the estimation of parameters, for plotting and more.
An integrated set of tools for thermodynamic calculations in aqueous geochemistry and geobiochemistry. Functions are provided for writing balanced reactions to form species from user-selected basis species and for calculating the standard molal properties of species and reactions, including the standard Gibbs energy and equilibrium constant. Calculations of the non-equilibrium chemical affinity and equilibrium chemical activity of species can be portrayed on diagrams as a function of temperature, pressure, or activity of basis species; in two dimensions, this gives a maximum affinity or predominance diagram. The diagrams have formatted chemical formulas and axis labels, and water stability limits can be added to Eh-pH, oxygen fugacity- temperature, and other diagrams with a redox variable. The package has been developed to handle common calculations in aqueous geochemistry, such as solubility due to complexation of metal ions, mineral buffers of redox or pH, and changing the basis species across a diagram ("mosaic diagrams"). CHNOSZ also implements a group additivity algorithm for the standard thermodynamic properties of proteins.
This package performs the colocalisation tests described in Giambartolomei et al (2013) <doi:10.1371/journal.pgen.1004383>, Wallace (2020) <doi:10.1371/journal.pgen.1008720>, Wallace (2021) <doi:10.1371/journal.pgen.1009440>.
Convex Clustering methods, including K-means algorithm, On-line Update algorithm (Hard Competitive Learning) and Neural Gas algorithm (Soft Competitive Learning), and calculation of several indexes for finding the number of clusters in a data set.
This data package contains monthly climate data in Germany, it can be used for heating and cooling calculations (external temperature, heating / cooling days, solar radiation).
Unifying an inconsistently coded categorical variable between two different time points in accordance with a mapping table. The main rule is to replicate the observation if it could be assigned to a few categories. Then using frequencies or statistical methods to approximate the probabilities of being assigned to each of them. This procedure was invented and implemented in the paper by Nasinski, Majchrowska, and Broniatowska (2020) <doi:10.24425/cejeme.2020.134747>.
Calculating the fractal dimension of a coastline using the boxes and dividers methods.
We implement causal decomposition analysis using methods proposed by Park, Lee, and Qin (2022) and Park, Kang, and Lee (2023), which provide researchers with multiple-mediator imputation, single-mediator imputation, and product-of-coefficients regression approaches to estimate the initial disparity, disparity reduction, and disparity remaining (<doi:10.1177/00491241211067516>; <doi:10.1177/00811750231183711>). We also implement sensitivity analysis for causal decomposition using R-squared values as sensitivity parameters (Park, Kang, Lee, and Ma, 2023 <doi:10.1515/jci-2022-0031>). Finally, we include individualized causal decomposition and sensitivity analyses proposed by Park, Kang, and Lee (2025+) <doi:10.48550/arXiv.2506.19010>.
Assess the calibration of an existing (i.e. previously developed) multistate model through calibration plots. Calibration is assessed using one of three methods. 1) Calibration methods for binary logistic regression models applied at a fixed time point in conjunction with inverse probability of censoring weights. 2) Calibration methods for multinomial logistic regression models applied at a fixed time point in conjunction with inverse probability of censoring weights. 3) Pseudo-values estimated using the Aalen-Johansen estimator of observed risk. All methods are applied in conjunction with landmarking when required. These calibration plots evaluate the calibration (in a validation cohort of interest) of the transition probabilities estimated from an existing multistate model. While package development has focused on multistate models, calibration plots can be produced for any model which utilises information post baseline to update predictions (e.g. dynamic models); competing risks models; or standard single outcome survival models, where predictions can be made at any landmark time. Please see Pate et al. (2024) <doi:10.1002/sim.10094> and Pate et al. (2024) <https://alexpate30.github.io/calibmsm/articles/Overview.html>.
Automates the process of containerizing R projects. The core function of containr is generate_dockerfile()', which analyzes an R project's environment and dependencies via an renv lock file and generates a ready-to-use Dockerfile that encapsulates the computational setup. The package helps researchers build portable and consistent workflows so that analyses can be reliably shared, archived, and rerun across systems. See R Core Team (2025) <https://www.R-project.org/>, Ushey et al. (2025) <https://CRAN.R-project.org/package=renv>, and Docker Inc. (2025) <https://www.docker.com/>.
Wraps the CIRCE (<https://github.com/ohdsi/circe-be>) Java library allowing cohort definition expressions to be edited and converted to Markdown or SQL'.
Tool for performing computational testing for conditional independence between variables in a dataset. CCI implements permutation in combination with Monte Carlo Cross-Validation in generating null distributions and test statistics. For more details see Computational Test for Conditional Independence (2024) <doi:10.3390/a17080323>.
This package implements an MCMC algorithm to estimate a hierarchical multinomial logit model with a normal heterogeneity distribution. The algorithm uses a hybrid Gibbs Sampler with a random walk metropolis step for the MNL coefficients for each unit. Dependent variable may be discrete or continuous. Independent variables may be discrete or continuous with optional order constraints. Means of the distribution of heterogeneity can optionally be modeled as a linear function of unit characteristics variables.