Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Enables: (1) plotting two-dimensional confidence regions, (2) coverage analysis of confidence region simulations, (3) calculating confidence intervals and the associated actual coverage for binomial proportions, (4) calculating the support values and the probability mass function of the Kaplan-Meier product-limit estimator, and (5) plotting the actual coverage function associated with a confidence interval for the survivor function from a randomly right-censored data set. Each is given in greater detail next. (1) Plots the two-dimensional confidence region for probability distribution parameters (supported distribution suffixes: cauchy, gamma, invgauss, logis, llogis, lnorm, norm, unif, weibull) corresponding to a user-given complete or right-censored dataset and level of significance. The crplot() algorithm plots more points in areas of greater curvature to ensure a smooth appearance throughout the confidence region boundary. An alternative heuristic plots a specified number of points at roughly uniform intervals along its boundary. Both heuristics build upon the radial profile log-likelihood ratio technique for plotting confidence regions given by Jaeger (2016) <doi:10.1080/00031305.2016.1182946>, and are detailed in a publication by Weld et al. (2019) <doi:10.1080/00031305.2018.1564696>. (2) Performs confidence region coverage simulations for a random sample drawn from a user- specified parametric population distribution, or for a user-specified dataset and point of interest with coversim(). (3) Calculates confidence interval bounds for a binomial proportion with binomTest(), calculates the actual coverage with binomTestCoverage(), and plots the actual coverage with binomTestCoveragePlot(). Calculates confidence interval bounds for the binomial proportion using an ensemble of constituent confidence intervals with binomTestEnsemble(). Calculates confidence interval bounds for the binomial proportion using a complete enumeration of all possible transitions from one actual coverage acceptance curve to another which minimizes the root mean square error for n <= 15 and follows the transitions for well-known confidence intervals for n > 15 using binomTestMSE(). (4) The km.support() function calculates the support values of the Kaplan-Meier product-limit estimator for a given sample size n using an induction algorithm described in Qin et al. (2023) <doi:10.1080/00031305.2022.2070279>. The km.outcomes() function generates a matrix containing all possible outcomes (all possible sequences of failure times and right-censoring times) of the value of the Kaplan-Meier product-limit estimator for a particular sample size n. The km.pmf() function generates the probability mass function for the support values of the Kaplan-Meier product-limit estimator for a particular sample size n, probability of observing a failure h at the time of interest expressed as the cumulative probability percentile associated with X = min(T, C), where T is the failure time and C is the censoring time under a random-censoring scheme. The km.surv() function generates multiple probability mass functions of the Kaplan-Meier product-limit estimator for the same arguments as those given for km.pmf(). (5) The km.coverage() function plots the actual coverage function associated with a confidence interval for the survivor function from a randomly right-censored data set for one or more of the following confidence intervals: Greenwood, log-minus-log, Peto, arcsine, and exponential Greenwood. The actual coverage function is plotted for a small number of items on test, stated coverage, failure rate, and censoring rate. The km.coverage() function can print an optional table containing all possible failure/censoring orderings, along with their contribution to the actual coverage function.
Sample and cell filtering as well as visualisation of output metrics from Cell Ranger by Grace X.Y. Zheng et al. (2017) <doi:10.1038/ncomms14049>. CRMetrics allows for easy plotting of output metrics across multiple samples as well as comparative plots including statistical assessments of these. CRMetrics allows for easy removal of ambient RNA using SoupX by Matthew D Young and Sam Behjati (2020) <doi:10.1093/gigascience/giaa151> or CellBender by Stephen J Fleming et al. (2022) <doi:10.1101/791699>. Furthermore, it is possible to preprocess data using Pagoda2 by Nikolas Barkas et al. (2021) <https://github.com/kharchenkolab/pagoda2> or Seurat by Yuhan Hao et al. (2021) <doi:10.1016/j.cell.2021.04.048> followed by embedding of cells using Conos by Nikolas Barkas et al. (2019) <doi:10.1038/s41592-019-0466-z>. Finally, doublets can be detected using scrublet by Samuel L. Wolock et al. (2019) <doi:10.1016/j.cels.2018.11.005> or DoubletDetection by Gayoso et al. (2020) <doi:10.5281/zenodo.2678041>. In the end, cells are filtered based on user input for use in downstream applications.
Fit composite Gaussian process (CGP) models as described in Ba and Joseph (2012) "Composite Gaussian Process Models for Emulating Expensive Functions", Annals of Applied Statistics. The CGP model is capable of approximating complex surfaces that are not second-order stationary. Important functions in this package are CGP, print.CGP, summary.CGP, predict.CGP and plotCGP.
Original ctsem (continuous time structural equation modelling) functionality, based on the OpenMx software, as described in Driver, Oud, Voelkle (2017) <doi:10.18637/jss.v077.i05>, with updated details in vignette. Combines stochastic differential equations representing latent processes with structural equation measurement models. These functions were split off from the main package of ctsem', as the main package uses the rstan package as a backend now -- offering estimation options from max likelihood to Bayesian. There are nevertheless use cases for the wide format SEM style approach as offered here, particularly when there are no individual differences in observation timing and the number of individuals is large. For the main ctsem package, see <https://cran.r-project.org/package=ctsem>.
An implementation of the clugen algorithm for generating multidimensional clusters with arbitrary distributions. Each cluster is supported by a line segment, the position, orientation and length of which guide where the respective points are placed. This package is described in Fachada & de Andrade (2023) <doi:10.1016/j.knosys.2023.110836>.
This package provides a common misconception is that the Hochberg procedure comes up with adequate overall type I error control when test statistics are positively correlated. However, unless the test statistics follow some standard distributions, the Hochberg procedure requires a more stringent positive dependence assumption, beyond mere positive correlation, to ensure valid overall type I error control. To fill this gap, we formulate statistical tests grounded in rank correlation coefficients to validate fulfillment of the positive dependence through stochastic ordering (PDS) condition. See Gou, J., Wu, K. and Chen, O. Y. (2024). Rank correlation coefficient based tests on positive dependence through stochastic ordering with application in cancer studies, Technical Report.
Uses a calibrated model fusion approach to optimally combine multiple surrogate markers. Specifically, two initial estimates of optimal composite scores of the markers are obtained; the optimal calibrated combination of the two estimated scores is then constructed which ensures both validity of the final combined score and optimality with respect to the proportion of treatment effect explained (PTE) by the final combined score. The primary function, pte.estimate.multiple(), estimates the PTE of the identified combination of multiple surrogate markers. Details are described in Wang et al (2022) <doi:10.1111/biom.13677>.
Quantify and visualise various measures of chemical diversity and dissimilarity, for phytochemical compounds and other sets of chemical composition data. Importantly, these measures can incorporate biosynthetic and/or structural properties of the chemical compounds, resulting in a more comprehensive quantification of diversity and dissimilarity. For details, see Petrén, Köllner and Junker (2023) <doi:10.1111/nph.18685>.
Compare color palettes with simulations of color vision deficiencies - deuteranopia, protanopia, and tritanopia. It includes calculation of distances between colors, and creating summaries of differences between a color palette and simulations of color vision deficiencies. This work was inspired by the blog post at <https://www.datawrapper.de/blog/colorblind-check>.
Create, edit, and remove cron jobs on your unix-alike system. The package provides a set of easy-to-use wrappers to crontab'. It also provides an RStudio add-in to easily launch and schedule your scripts.
This package provides a pair of functions for renaming and encoding data frames using external crosswalk files. It is especially useful when constructing master data sets from multiple smaller data sets that do not name or encode variables consistently across files. Based on similar commands in Stata'.
Evaluate arbitrary function calls using workers on HPC schedulers in single line of code. All processing is done on the network without accessing the file system. Remote schedulers are supported via SSH.
Use machine learning algorithms and advanced geographic information system tools to build Species Distribution Modeling in a extensible and modern fashion.
Implementation of the empirical method to derive log2 counts per million (CPM) cutoff to filter out lowly expressed genes using ERCC spike-ins as described in Goll and Bosinger et.al (2022)<doi:10.1101/2022.06.23.497396>. This package utilizes the synthetic mRNA control pairs developed by the External RNA Controls Consortium (ERCC) (ERCC 1 / ERCC 2) that are spiked into sample pairs at known ratios at various absolute abundances. The relationship between the observed and expected fold changes is then used to empirically determine an optimal log2 CPM cutoff for filtering out lowly expressed genes.
DNA methylation signatures are usually based on multivariate approaches that require hundreds of sites for predictions. CimpleG is a method for the detection of small CpG methylation signatures used for cell-type classification and deconvolution. CimpleG is time efficient and performs as well as top performing methods for cell-type classification of blood cells and other somatic cells, while basing its prediction on a single DNA methylation site per cell type (but users can also select more sites if they so wish). Users can train cell type classifiers ('CimpleG based, and others) and directly apply these in a deconvolution of cell mixes context. Altogether, CimpleG provides a complete computational framework for the delineation of DNAm signatures and cellular deconvolution. For more details see Maié et al. (2023) <doi:10.1186/s13059-023-03000-0>.
Access chemical, hazard, bioactivity, and exposure data from the Computational Toxicology and Exposure ('CTX') APIs <https://api-ccte.epa.gov/docs/>. ccdR was developed to streamline the process of accessing the information available through the CTX APIs without requiring prior knowledge of how to use APIs. Most data is also available on the CompTox Chemical Dashboard ('CCD') <https://comptox.epa.gov/dashboard/> and other resources found at the EPA Computational Toxicology and Exposure Online Resources <https://www.epa.gov/comptox-tools>.
This package performs classical age-depth modelling of dated sediment deposits - prior to applying more sophisticated techniques such as Bayesian age-depth modelling. Any radiocarbon dated depths are calibrated. Age-depth models are constructed by sampling repeatedly from the dated levels, each time drawing age-depth curves. Model types include linear interpolation, linear or polynomial regression, and a range of splines. See Blaauw (2010) <doi:10.1016/j.quageo.2010.01.002>.
The beta-binomial test is used for significance analysis of independent samples by Pham et al. (2010) <doi:10.1093/bioinformatics/btp677>. The inverted beta-binomial test is used for paired sample testing, e.g. pre-treatment and post-treatment data, by Pham and Jimenez (2012) <doi:10.1093/bioinformatics/bts394>.
An engine for stochastic cellular automata. It provides a high-level interface to declare a model, which can then be simulated by various backends (Genin et al. (2023) <doi:10.1101/2023.11.08.566206>).
Use C++ Standard Template Library containers interactively in R. Includes sets, unordered sets, multisets, unordered multisets, maps, unordered maps, multimaps, unordered multimaps, stacks, queues, priority queues, vectors, deques, forward lists, and lists.
Execute command line programs and format results for interactive use. It is based on the package processx so it does not use shell to start up the process like system() and system2(). It also provides a simpler and cleaner interface than processx::run().
This package provides a fast way to loop a character vector or file names as a menu in the console for the user to choose an option.
This is an opinionated wrapper around the python-chess package. It allows users to read and write PGN files as well as create and explore game trees such as the ones seen in chess books.
Supports analysis of trends in climate change, ecological and crop modelling.