Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Code for a variety of nonlinear conditional independence tests: Kernel conditional independence test (Zhang et al., UAI 2011, <arXiv:1202.3775>), Residual Prediction test (based on Shah and Buehlmann, <arXiv:1511.03334>), Invariant environment prediction, Invariant target prediction, Invariant residual distribution test, Invariant conditional quantile prediction (all from Heinze-Deml et al., <arXiv:1706.08576>).
This package provides a system containing easy-to-use tools to compute the bioequivalence assessment in the univariate framework using the methods proposed in Boulaguiem et al. (2023) <doi:10.1101/2023.03.11.532179>.
Publicly available COVID-19 data for Norway cleaned and merged into one dataset, including PCR confirmed cases, tests, hospitalisation and vaccination.
Clusters longitudinal trajectories over time (can be unequally spaced, unequal length time series and/or partially overlapping series) on a common time axis. Performs k-means clustering on a single continuous variable measured over time, where each mean is defined by a thin plate spline fit to all points in a cluster. Distance is MSE across trajectory points to cluster spline. Provides graphs of derived cluster splines, silhouette plots, and Adjusted Rand Index evaluations of the number of clusters. Scales well to large data with multicore parallelism available to speed computation.
This package provides a spatially-aware cell clustering algorithm is provided with cluster significance assessment. It comprises four key modules: spatially-aware cell-gene co-embedding, cell clustering, signature gene identification, and cluster significant assessment. More details can be referred to Peng Xie, et al. (2025) <doi:10.1016/j.cell.2025.05.035>.
This k-means algorithm is able to cluster data with missing values and as a by-product completes the data set. The implementation can deal with missing values in multiple variables and is computationally efficient since it iteratively uses the current cluster assignment to define a plausible distribution for missing value imputation. Weights are used to shrink early random draws for missing values (i.e., draws based on the cluster assignments after few iterations) towards the global mean of each feature. This shrinkage slowly fades out after a fixed number of iterations to reflect the increasing credibility of cluster assignments. See the vignette for details.
Compare double-precision floating point vectors using relative differences. All equality operations are calculated using cpp11'.
The issue of overlapping regions in multidimensional data arises when different classes or clusters share similar feature representations, making it challenging to delineate distinct boundaries between them accurately. This package provides methods for detecting and visualizing these overlapping regions using partitional clustering techniques based on nearest neighbor distances.
Statistical modeling for correlated count data using the beta-binomial distribution, described in Martin et al. (2020) <doi:10.1214/19-AOAS1283>. It allows for both mean and overdispersion covariates.
Allows to generate colors from palettes defined in the colormap module of Node.js'. (see <https://github.com/bpostlethwaite/colormap> for more information). In total it provides 44 distinct palettes made from sequential and/or diverging colors. In addition to the pre defined palettes you can also specify your own set of colors. There are also scale functions that can be used with ggplot2'.
Implementation of the Contextual Importance and Utility (CIU) concepts for Explainable AI (XAI). A description of CIU can be found in e.g. Främling (2020) <doi:10.1007/978-3-030-51924-7_4>.
Produce an averaging estimate/prediction by combining all candidate models for partial linear functional additive models, using multi-fold cross-validation criterion. More details can be referred to arXiv e-Prints via <doi:10.48550/arXiv.2105.00966>.
An implementation of robust estimation in Cox model. Functionality includes fitting efficiently and robustly Cox proportional hazards regression model in its basic form, where explanatory variables are time independent with one event per subject. Method is based on a smooth modification of the partial likelihood.
Posterior inference under the convex mixture regression (CoMiRe) models introduced by Canale, Durante, and Dunson (2018) <doi:10.1111/biom.12917>.
Run computer experiments using the adaptive composite grid algorithm with a Gaussian process model. The algorithm works best when running an experiment that can evaluate thousands of points from a deterministic computer simulation. This package is an implementation of a forthcoming paper by Plumlee, Erickson, Ankenman, et al. For a preprint of the paper, contact the maintainer of this package.
Fits constrained groupwise additive index models and provides functions for inference and interpretation of these models. The method is described in Masselot, Chebana, Campagna, Lavigne, Ouarda, Gosselin (2022) "Constrained groupwise additive index models" <doi:10.1093/biostatistics/kxac023>.
Unified interface for the estimation of causal networks, including the methods backShift (from package backShift'), bivariateANM (bivariate additive noise model), bivariateCAM (bivariate causal additive model), CAM (causal additive model) (from package CAM'; the package is temporarily unavailable on the CRAN repository; formerly available versions can be obtained from the archive), hiddenICP (invariant causal prediction with hidden variables), ICP (invariant causal prediction) (from package InvariantCausalPrediction'), GES (greedy equivalence search), GIES (greedy interventional equivalence search), LINGAM', PC (PC Algorithm), FCI (fast causal inference), RFCI (really fast causal inference) (all from package pcalg') and regression.
Uses optimal transport distances to find probabilistic matching estimators for causal inference. These methods are described in Dunipace, Eric (2021) <arXiv:2109.01991>. The package will build the weights, estimate treatment effects, and calculate confidence intervals via the methods described in the paper. The package also supports several other methods as described in the help files.
Central limit theorem experiments presented by data frames or plots. Functions include generating theoretical sample space, corresponding probability, and simulated results as well.
Learning the structure of graphical models from datasets with thousands of variables. More information about the research papers detailing the theory behind Chordalysis is available at <http://www.francois-petitjean.com/Research> (KDD 2016, SDM 2015, ICDM 2014, ICDM 2013). The R package development site is <https://github.com/HerrmannM/Monash-ChoR>.
Perform the functional modeling methods of Huang and Wang (2018) <doi:10.1111/biom.12741> to accommodate dependent error in covariates of the proportional hazards model. The adopted measurement error model has minimal assumptions on the dependence structure, and an instrumental variable is supposed to be available.
This package provides different datasets parsed from Drugbank <https://www.drugbank.ca/covid-19> database using dbparser package. It is a smaller version from dbdataset package. It contains only information about COVID-19 possible treatment.
This package implements higher order likelihood-based inference for logistic and loglinear models.
Calculate the R-squared, aka explained randomness, based on the partial likelihood ratio statistic under the Cox Proportional Hazard model [J O'Quigley, R Xu, J Stare (2005) <doi:10.1002/sim.1946>].