Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs the cross-match test that is an exact, distribution free test of equality of 2 high dimensional multivariate distributions. The input is a distance matrix and the labels of the two groups to be compared, the output is the number of cross-matches and a p-value. See Rosenbaum (2005) <doi:10.1111/j.1467-9868.2005.00513.x>.
This package provides a flexible and robust joint test of the single nucleotide polymorphism (SNP) main effect and genotype-by-treatment interaction effect for continuous and binary endpoints. Two analytic procedures, Cauchy weighted joint test (CWOT) and adaptively weighted joint test (AWOT), are proposed to accurately calculate the joint test p-value. The proposed methods are evaluated through extensive simulations under various scenarios. The results show that the proposed AWOT and CWOT control type I error well and outperform existing methods in detecting the most interesting signal patterns in pharmacogenetics (PGx) association studies. For reference, see Hong Zhang, Devan Mehrotra and Judong Shen (2022) <doi:10.13140/RG.2.2.28323.53280>.
This package provides methods for interpreting CoDa (Compositional Data) regression models along the lines of "Pairwise share ratio interpretations of compositional regression models" (Dargel and Thomas-Agnan 2024) <doi:10.1016/j.csda.2024.107945>. The new methods include variation scenarios, elasticities, elasticity differences and share ratio elasticities. These tools are independent of log-ratio transformations and allow an interpretation in the original space of shares. CoDaImpact is designed to be used with the compositions package and its ecosystem.
Calculate p-values and confidence intervals using cluster-adjusted t-statistics (based on Ibragimov and Muller (2010) <DOI:10.1198/jbes.2009.08046>, pairs cluster bootstrapped t-statistics, and wild cluster bootstrapped t-statistics (the latter two techniques based on Cameron, Gelbach, and Miller (2008) <DOI:10.1162/rest.90.3.414>. Procedures are included for use with GLM, ivreg, plm (pooling or fixed effects), and mlogit models.
OpenAI's ChatGPT <https://chat.openai.com/> coding assistant for RStudio'. A set of functions and RStudio addins that aim to help the R developer in tedious coding tasks.
Analysis of configuration frequencies for simple and repeated measures, multiple-samples CFA, hierarchical CFA, bootstrap CFA, functional CFA, Kieser-Victor CFA, and Lindner's test using a conventional and an accelerated algorithm.
Chinese numerals processing in R, such as conversion between Chinese numerals and Arabic numerals as well as detection and extraction of Chinese numerals in character objects and string. This package supports the casual scale naming system and the respective SI prefix systems used in mainland China and Taiwan: "The State Council's Order on the Unified Implementation of Legal Measurement Units in Our Country" The State Council of the People's Republic of China (1984) "Names, Definitions and Symbols of the Legal Units of Measurement and the Decimal Multiples and Submultiples" Ministry of Economic Affairs (2019) <https://gazette.nat.gov.tw/egFront/detail.do?metaid=108965>.
This package provides a tool to estimate IRT item parameters (2 PL) using CTT-based item statistics from small samples via artificial neural networks and regression trees.
Implementation of transductive conformal prediction (see Vovk, 2013, <doi:10.1007/978-3-642-41142-7_36>) and inductive conformal prediction (see Balasubramanian et al., 2014, ISBN:9780124017153) for classification problems.
Extensive functions for bivariate copula (bicopula) computations and related operations for bicopula theory. The lower, upper, product, and select other bicopula are implemented along with operations including the diagonal, survival copula, dual of a copula, co-copula, and numerical bicopula density. Level sets, horizontal and vertical sections are supported. Numerical derivatives and inverses of a bicopula are provided through which simulation is implemented. Bicopula composition, convex combination, asymmetry extension, and products also are provided. Support extends to the Kendall Function as well as the Lmoments thereof. Kendall Tau, Spearman Rho and Footrule, Gini Gamma, Blomqvist Beta, Hoeffding Phi, Schweizer- Wolff Sigma, tail dependency, tail order, skewness, and bivariate Lmoments are implemented, and positive/negative quadrant dependency, left (right) increasing (decreasing) are available. Other features include Kullback-Leibler Divergence, Vuong Procedure, spectral measure, and Lcomoments for fit and inference, Lcomoment ratio diagrams, maximum likelihood, and AIC, BIC, and RMSE for goodness-of-fit.
This package provides fast, easy feature extraction of human speech and model estimation with hidden Markov models. Flexible extraction of phonetic features and their derivatives, with necessary preprocessing options like feature standardization. Communication can estimate supervised and unsupervised hidden Markov models with these features, with cross validation and corrections for auto-correlation in features. Methods developed in Knox and Lucas (2021) <doi:10.7910/DVN.8BTOHQ>.
Create contour lines for a non regular series of points, potentially from a non-regular canvas.
This package provides access to the COLOURlovers <https://www.colourlovers.com/> API, which offers color inspiration and color palettes.
Wrapper of .Call() that runs exit handlers to clean up C resources. Helps managing C (non-R) resources while using the R API.
Filtering, also known as gating, of flow cytometry samples using the curvHDR method, which is described in Naumann, U., Luta, G. and Wand, M.P. (2010) <DOI:10.1186/1471-2105-11-44>.
This package provides a set of functions for counterfactual decomposition (cfdecomp). The functions available in this package decompose differences in an outcome attributable to a mediating variable (or sets of mediating variables) between groups based on counterfactual (causal inference) theory. By using Monte Carlo (MC) integration (simulations based on empirical estimates from multivariable models) we provide added flexibility compared to existing (analytical) approaches, at the cost of computational power or time. The added flexibility means that we can decompose difference between groups in any outcome or and with any mediator (any variable type and distribution). See Sudharsanan & Bijlsma (2019) <doi:10.4054/MPIDR-WP-2019-004> for more information.
Population ratio estimator (calibrated) under two-phase random sampling design has gained enormous popularity in the recent time. This package provides functions for estimation population ratio (calibrated) under two phase sampling design, including the approximate variance of the ratio estimator. The improved ratio estimator can be applicable for both the case, when auxiliary data is available at unit level or aggregate level (eg., mean or total) for first phase sampled. Calibration weight of each unit of the second phase sample was calculated. Single and combined inclusion probabilities were also estimated for both phases under two phase random [simple random sampling without replacement (SRSWOR)] sampling. The improved ratio estimator's percentage coefficient of variation was also determined as a measure of accuracy. This package has been developed based on the theoretical development of Islam et al. (2021) and Ozgul (2020) <doi:10.1080/00949655.2020.1844702>.
Estimation, testing and regression modeling of subdistribution functions in competing risks using quantile regressions, as described in Peng and Fine (2009) <DOI:10.1198/jasa.2009.tm08228>.
One haplotype is a combination of SNP (Single Nucleotide Polymorphisms) within the QTL (Quantitative Trait Loci). clusterhap groups together all individuals of a population with the same haplotype. Each group contains individual with the same allele in each SNP, whether or not missing data. Thus, clusterhap groups individuals, that to be imputed, have a non-zero probability of having the same alleles in the entire sequence of SNP's. Moreover, clusterhap calculates such probability from relative frequencies.
Thematic quality indices are provided to facilitate the evaluation and quality control of geospatial data products (e.g. thematic maps, remote sensing classifications, etc.). The indices offered are based on the so-called confusion matrix. This matrix is constructed by comparing the assigned classes or attributes of a set of pairs of positions or objects in the product and the ground truth. In this package it is considered that the classes of the ground truth correspond to the columns and that the classes of the product to be valued correspond to the rows. The package offers two object classes with their methods: ConfMatrix (Confusion matrix) and QCCS (Quality Control Columns Set). The ConfMatrix class of objects offers more than 20 methods based on the confusion matrix. The QCCS class of objects offers a different perspective in which the ground truth is considered to allow the values of the column marginals to be fixed, see Ariza López et al. (2019) <doi:10.3390/app9204240> and Canran Liu et al. (2007) <doi:10.1016/j.rse.2006.10.010> for more details. The package was created with R6'.
Fast, optimal, and reproducible weighted univariate clustering by dynamic programming. Four problems are solved, including univariate k-means (Wang & Song 2011) <doi:10.32614/RJ-2011-015> (Song & Zhong 2020) <doi:10.1093/bioinformatics/btaa613>, k-median, k-segments, and multi-channel weighted k-means. Dynamic programming is used to minimize the sum of (weighted) within-cluster distances using respective metrics. Its advantage over heuristic clustering in efficiency and accuracy is pronounced when there are many clusters. Multi-channel weighted k-means groups multiple univariate signals into k clusters. An auxiliary function generates histograms adaptive to patterns in data. This package provides a powerful set of tools for univariate data analysis with guaranteed optimality, efficiency, and reproducibility, useful for peak calling on temporal, spatial, and spectral data.
This package performs the Cram method, a general and efficient approach to simultaneous learning and evaluation using a generic machine learning algorithm. In a single pass of batched data, the proposed method repeatedly trains a machine learning algorithm and tests its empirical performance. Because it utilizes the entire sample for both learning and evaluation, cramming is significantly more data-efficient than sample-splitting. Unlike cross-validation, Cram evaluates the final learned model directly, providing sharper inference aligned with real-world deployment. The method naturally applies to both policy learning and contextual bandits, where decisions are based on individual features to maximize outcomes. The package includes cram_policy() for learning and evaluating individualized binary treatment rules, cram_ml() to train and assess the population-level performance of machine learning models, and cram_bandit() for on-policy evaluation of contextual bandit algorithms. For all three functions, the package provides estimates of the average outcome that would result if the model were deployed, along with standard errors and confidence intervals for these estimates. Details of the method are described in Jia, Imai, and Li (2024) <https://www.hbs.edu/ris/Publication%20Files/2403.07031v1_a83462e0-145b-4675-99d5-9754aa65d786.pdf> and Jia et al. (2025) <doi:10.48550/arXiv.2403.07031>.
Estimation of crop water demand can be processed via this package. As example, the data from TerraClimate dataset (<https://www.climatologylab.org/terraclimate.html>) calibrated with automatic weather stations of National Meteorological Institute of Brazil is available in a coarse spatial resolution to do the crop water demand. However, the user have also the option to download the variables directly from TerraClimate repository with the download.terraclimate function and access the original TerraClimate products. If the user believes that is necessary calibrate the variables, there is another function to do it. Lastly, the estimation of the crop water demand present in this package can be run for all the Brazilian territory with TerraClimate dataset.
This package provides SPSS'- and SAS'-like output for cross tabulations of two categorical variables (CROSSTABS) and for hierarchical loglinear analyses of two or more categorical variables (LOGLINEAR). The methods are described in Agresti (2013, ISBN:978-0-470-46363-5), Ajzen & Walker (2021, ISBN:9780429330308), Field (2018, ISBN:9781526440273), Norusis (2012, ISBN:978-0-321-74843-0), Nussbaum (2015, ISBN:978-1-84872-603-1), Stevens (2009, ISBN:978-0-8058-5903-4), Tabachnik & Fidell (2019, ISBN:9780134790541), and von Eye & Mun (2013, ISBN:978-1-118-14640-8).