Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Climate crop zoning based in minimum and maximum air temperature. The data used in the package are from TerraClimate dataset (<https://www.climatologylab.org/terraclimate.html>), but, it have been calibrated with automatic weather stations of National Meteorological Institute of Brazil. The climate crop zoning of this package can be run for all the Brazilian territory.
Statistical modeling for correlated count data using the beta-binomial distribution, described in Martin et al. (2020) <doi:10.1214/19-AOAS1283>. It allows for both mean and overdispersion covariates.
The Concordance Test is a non-parametric method for testing whether two o more samples originate from the same distribution. It extends the Kendall Tau correlation coefficient when there are only two groups. For details, see Alcaraz J., Anton-Sanchez L., Monge J.F. (2022) The Concordance Test, an Alternative to Kruskal-Wallis Based on the Kendall-tau Distance: An R Package. The R Journal 14, 26รข 53 <doi:10.32614/RJ-2022-039>.
This package provides a set of tools for evaluating clustering robustness using proportion of ambiguously clustered pairs (Senbabaoglu et al. (2014) <doi:10.1038/srep06207>), as well as similarity across methods and method stability using element-centric clustering comparison (Gates et al. (2019) <doi:10.1038/s41598-019-44892-y>). Additionally, this package enables stability-based parameter assessment for graph-based clustering pipelines typical in single-cell data analysis.
Emulation of an application originally created by Paul Pukite. Computer Aided Rate Modeling and Simulation. Jan Pukite and Paul Pukite, (1998, ISBN 978-0-7803-3482), William J. Stewart, (1994, ISBN: 0-691-03699-3).
Computes p-value according to the CRT using the HierNet test statistic. For more details, see Ham, Imai, Janson (2022) "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" <arXiv:2201.08343>.
This package provides functions for the input/output and visualization of medical imaging data in the form of CIFTI files <https://www.nitrc.org/projects/cifti/>.
We provide a toolbox to fit a continuous-time fractionally integrated ARMA process (CARFIMA) on univariate and irregularly spaced time series data via both frequentist and Bayesian machinery. A general-order CARFIMA(p, H, q) model for p>q is specified in Tsai and Chan (2005) <doi:10.1111/j.1467-9868.2005.00522.x> and it involves p+q+2 unknown model parameters, i.e., p AR parameters, q MA parameters, Hurst parameter H, and process uncertainty (standard deviation) sigma. Also, the model can account for heteroscedastic measurement errors, if the information about measurement error standard deviations is known. The package produces their maximum likelihood estimates and asymptotic uncertainties using a global optimizer called the differential evolution algorithm. It also produces posterior samples of the model parameters via Metropolis-Hastings within a Gibbs sampler equipped with adaptive Markov chain Monte Carlo. These fitting procedures, however, may produce numerical errors if p>2. The toolbox also contains a function to simulate discrete time series data from CARFIMA(p, H, q) process given the model parameters and observation times.
This package provides a big data version for fitting cumulative probability models using the orm() function from the rms package. See Liu et al. (2017) <DOI:10.1002/sim.7433> for details.
This package contains functions for the construction of carryover balanced crossover designs. In addition contains functions to check given designs for balance.
Proposes Seq2seq Time-Feature Analysis using an Encoder-Decoder to project into latent space and a Forward Network to predict the next sequence.
This package provides a simple package to grab cheat sheets and save them to your local computer.
Provide the safe color set for color blindness, the simulator of protanopia, deuteranopia. The color sets are collected from: Wong, B. (2011) <doi:10.1038/nmeth.1618>, and <http://mkweb.bcgsc.ca/biovis2012/>. The simulations of the appearance of the colors to color-deficient viewers were based on algorithms in Vienot, F., Brettel, H. and Mollon, J.D. (1999) <doi:10.1002/(SICI)1520-6378(199908)24:4%3C243::AID-COL5%3E3.0.CO;2-3>. The cvdPlot() function to generate ggplot grobs of simulations were modified from <https://github.com/clauswilke/colorblindr>.
This package provides a multi-task learning approach to variable selection regression with highly correlated predictors and sparse effects, based on frequentist statistical inference. It provides statistical evidence to identify which subsets of predictors have non-zero effects on which subsets of response variables, motivated and designed for colocalization analysis across genome-wide association studies (GWAS) and quantitative trait loci (QTL) studies. The ColocBoost model is described in Cao et. al. (2025) <doi:10.1101/2025.04.17.25326042>.
The CalMaTe method calibrates preprocessed allele-specific copy number estimates (ASCNs) from DNA microarrays by controlling for single-nucleotide polymorphism-specific allelic crosstalk. The resulting ASCNs are on average more accurate, which increases the power of segmentation methods for detecting changes between copy number states in tumor studies including copy neutral loss of heterozygosity. CalMaTe applies to any ASCNs regardless of preprocessing method and microarray technology, e.g. Affymetrix and Illumina.
Identification of cardinal dates (begin, time of maximum, end of mass developments) in ecological time series using fitted Weibull functions.
This package provides simple functions to convert between color names and hexadecimal color codes using an extensive database of over 32,000 colors. Includes all 657 R built-in colors plus the comprehensive color-names database. The package supports bidirectional conversion with backward compatibility, prioritizing R colors when available.
General functions for convolutions of data. Moving average, running median, and other filters are available. Bibliography regarding the functions can be found in the following text. Richard G. Brereton (2003) <ISBN:9780471489771>.
This package provides a modeling tool allowing gene selection, reverse engineering, and prediction in cascade networks. Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014) <doi:10.1093/bioinformatics/btt705>.
This package implements algorithms for analyzing Cayley graphs of permutation groups, with a focus on the TopSpin puzzle and similar permutation-based combinatorial puzzles. Provides methods for cycle detection, state space exploration, and finding optimal operation sequences in permutation groups generated by shift and reverse operations.
Computes the coverage correlation coefficient introduced in <doi:10.48550/arXiv.2508.06402> , a statistical measure that quantifies dependence between two random vectors by computing the union volume of data-centered hypercubes in a uniform space.
An implementation of Conic Multivariate Adaptive Regression Splines (CMARS) in R. See Weber et al. (2011) CMARS: a new contribution to nonparametric regression with multivariate adaptive regression splines supported by continuous optimization, <DOI:10.1080/17415977.2011.624770>. It constructs models by using the terms obtained from the forward step of MARS and then estimates parameters by using Tikhonov regularization and conic quadratic optimization. It is possible to construct models for prediction and binary classification. It provides performance measures for the model developed. The package needs the optimisation software MOSEK <https://www.mosek.com/> to construct the models. Please follow the instructions in Rmosek for the installation.
This package provides functionality for the analysis of clustered data using the cluster bootstrap.
This package contains Coverage Adjusted Standardized Mutual Information ('CASMI')-based functions. CASMI is a fundamental concept of a series of methods. For more information about CASMI and CASMI'-related methods, please refer to the corresponding publications (e.g., a feature selection method, Shi, J., Zhang, J., & Ge, Y. (2019) <doi:10.3390/e21121179>, and a dataset quality measurement method, Shi, J., Zhang, J., & Ge, Y. (2019) <doi:10.1109/ICHI.2019.8904553>) or contact the package author for the latest updates.