Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements Collective And Point Anomaly (CAPA) Fisch, Eckley, and Fearnhead (2022) <doi:10.1002/sam.11586>, Multi-Variate Collective And Point Anomaly (MVCAPA) Fisch, Eckley, and Fearnhead (2021) <doi:10.1080/10618600.2021.1987257>, Proportion Adaptive Segment Selection (PASS) Jeng, Cai, and Li (2012) <doi:10.1093/biomet/ass059>, and Bayesian Abnormal Region Detector (BARD) Bardwell and Fearnhead (2015) <doi:10.1214/16-BA998>. These methods are for the detection of anomalies in time series data. Further information regarding the use of this package along with detailed examples can be found in Fisch, Grose, Eckley, Fearnhead, and Bardwell (2024) <doi:10.18637/jss.v110.i01>.
This package implements the allan variance and allan variance linear regression estimator for latent time series models. More details about the method can be found, for example, in Guerrier, S., Molinari, R., & Stebler, Y. (2016) <doi:10.1109/LSP.2016.2541867>.
Processes noble gas mass spectrometer data to determine the isotopic composition of argon (comprised of Ar36, Ar37, Ar38, Ar39 and Ar40) released from neutron-irradiated potassium-bearing minerals. Then uses these compositions to calculate precise and accurate geochronological ages for multiple samples as well as the covariances between them. Error propagation is done in matrix form, which jointly treats all samples and all isotopes simultaneously at every step of the data reduction process. Includes methods for regression of the time-resolved mass spectrometer signals to t=0 ('time zero') for both single- and multi-collector instruments, blank correction, mass fractionation correction, detector intercalibration, decay corrections, interference corrections, interpolation of the irradiation parameter between neutron fluence monitors, and (weighted mean) age calculation. All operations are performed on the logs of the ratios between the different argon isotopes so as to properly treat them as compositional data', sensu Aitchison [1986, The Statistics of Compositional Data, Chapman and Hall].
Utilities to parse authors fields from DESCRIPTION files and general purpose functions to deduplicate names in database, beyond the specific case of R package authors.
Simplifies aspects of linear regression analysis, particularly simultaneous inference. Additionally, supports "A Progressive Introduction to Linear Models" by Joshua French (<https://jfrench.github.io/LinearRegression/>).
This package provides an automatic aggregation tool to manage point data privacy, intended to be helpful for the production of official spatial data and for researchers. The package pursues the data accuracy at the smallest possible areas preventing individual information disclosure. The methodology, based on hierarchical geographic data structures performs aggregation and local suppression of point data to ensure privacy as described in Lagonigro, R., Oller, R., Martori J.C. (2017) <doi:10.2436/20.8080.02.55>. The data structures are created following the guidelines for grid datasets from the European Forum for Geography and Statistics.
This package provides a developer-facing interface to the Arrow Database Connectivity ('ADBC') SQLite driver for the purposes of building high-level database interfaces for users. ADBC <https://arrow.apache.org/adbc/> is an API standard for database access libraries that uses Arrow for result sets and query parameters.
Several cubic spline interpolation methods of H. Akima for irregular and regular gridded data are available through this package, both for the bivariate case (irregular data: ACM 761, regular data: ACM 760) and univariate case (ACM 433 and ACM 697). Linear interpolation of irregular gridded data is also covered by reusing D. J. Renkas triangulation code which is part of Akimas Fortran code. A bilinear interpolator for regular grids was also added for comparison with the bicubic interpolator on regular grids. Please note that most of the functions are now also covered in package interp, which is a re-implementation from scratch under a free license.
Accelerated destructive degradation tests (ADDT) are often used to collect necessary data for assessing the long-term properties of polymeric materials. Based on the collected data, a thermal index (TI) is estimated. The TI can be useful for material rating and comparison. This package implements the traditional method based on the least-squares method, the parametric method based on maximum likelihood estimation, and the semiparametric method based on spline methods, and the corresponding methods for estimating TI for polymeric materials. The traditional approach is a two-step approach that is currently used in industrial standards, while the parametric method is widely used in the statistical literature. The semiparametric method is newly developed. Both the parametric and semiparametric approaches allow one to do statistical inference such as quantifying uncertainties in estimation, hypothesis testing, and predictions. Publicly available datasets are provided illustrations. More details can be found in Jin et al. (2017).
This package provides a function to calculate the concentration of un-ionized ammonia in the total ammonia in aqueous solution using the pH and temperature values.
Provides: (1) Tools to infer dominance hierarchies based on calculating Elo scores, but with custom functions to improve estimates in animals with relatively stable dominance ranks. (2) Tools to plot the shape of the dominance hierarchy and estimate the uncertainty of a given data set.
Consider autoregressive model of order p where the distribution function of innovation is unknown, but innovations are independent and symmetrically distributed. The package contains a function named ARMDE which takes X (vector of n observations) and p (order of the model) as input argument and returns minimum distance estimator of the parameters in the model.
This package implements a constrained version of hierarchical agglomerative clustering, in which each observation is associated to a position, and only adjacent clusters can be merged. Typical application fields in bioinformatics include Genome-Wide Association Studies or Hi-C data analysis, where the similarity between items is a decreasing function of their genomic distance. Taking advantage of this feature, the implemented algorithm is time and memory efficient. This algorithm is described in Ambroise et al (2019) <doi:10.1186/s13015-019-0157-4>.
Routines for astrochronologic testing, astronomical time scale construction, and time series analysis <doi:10.1016/j.earscirev.2018.11.015>. Also included are a range of statistical analysis and modeling routines that are relevant to time scale development and paleoclimate analysis.
Fast generators and iterators for permutations, combinations, integer partitions and compositions. The arrangements are in lexicographical order and generated iteratively in a memory efficient manner. It has been demonstrated that arrangements outperforms most existing packages of similar kind. Benchmarks could be found at <https://randy3k.github.io/arrangements/articles/benchmark.html>.
The Aligned Corpus Toolkit (act) is designed for linguists that work with time aligned transcription data. It offers functions to import and export various annotation file formats ('ELAN .eaf, EXMARaLDA .exb and Praat .TextGrid files), create print transcripts in the style of conversation analysis, search transcripts (span searches across multiple annotations, search in normalized annotations, make concordances etc.), export and re-import search results (.csv and Excel .xlsx format), create cuts for the search results (print transcripts, audio/video cuts using FFmpeg and video sub titles in Subrib title .srt format), modify the data in a corpus (search/replace, delete, filter etc.), interact with Praat using Praat'-scripts, and exchange data with the rPraat package. The package is itself written in R and may be expanded by other users.
Machine learning based package to predict anti-angiogenic peptides using heterogeneous sequence descriptors. AntAngioCOOL exploits five descriptor types of a peptide of interest to do prediction including: pseudo amino acid composition, k-mer composition, k-mer composition (reduced alphabet), physico-chemical profile and atomic profile. According to the obtained results, AntAngioCOOL reached to a satisfactory performance in anti-angiogenic peptide prediction on a benchmark non-redundant independent test dataset.
Convert populations into integer number of seats for legislative bodies. Implements apportionment methods used historically and currently in the United States for reapportionment after the Census, as described in <https://www.census.gov/history/www/reference/apportionment/methods_of_apportionment.html>.
R Interface to AutoKeras <https://autokeras.com/>. AutoKeras is an open source software library for Automated Machine Learning (AutoML). The ultimate goal of AutoML is to provide easily accessible deep learning tools to domain experts with limited data science or machine learning background. AutoKeras provides functions to automatically search for architecture and hyperparameters of deep learning models.
Parse Autonomous Recording Unit (ARU) data and for sub-sampling recordings. Extract Metadata from your recordings, select a subset of recordings for interpretation, and prepare files for processing on the WildTrax <https://wildtrax.ca/> platform. Read and process metadata from recordings collected using the SongMeter and BAR-LT types of ARUs.
Extraction of subsequences into FASTA files from GenBank annotations where gene names may vary among accessions. Borstein & O'Meara (2018) <doi:10.7717/peerj.5179>.
Estimate group aggregates, where one can set user-defined conditions that each group of records must satisfy to be suitable for aggregation. If a group of records is not suitable, it is expanded using a collapsing scheme defined by the user. A paper on this package was published in the Journal of Statistical Software <doi:10.18637/jss.v112.i04>.
This package provides automated visual inference of residual plots using computer vision models, facilitating diagnostic checks for classical normal linear regression models.
Create APA style text from analyses for use within R Markdown documents. Descriptive statistics, confidence intervals, and cell sizes are reported.