Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Subset and download data from EU Copernicus Marine Service Information: <https://data.marine.copernicus.eu>. Import data on the oceans physical and biogeochemical state from Copernicus into R without the need of external software.
Analyzing responses to check-all-that-apply survey items often requires data transformations and subjective decisions for combining categories. CATAcode contains tools for exploring response patterns, facilitating data transformations, applying a set of decision rules for coding responses, and summarizing response frequencies.
The CoTiMA package performs meta-analyses of correlation matrices of repeatedly measured variables taken from studies that used different time intervals. Different time intervals between measurement occasions impose problems for meta-analyses because the effects (e.g. cross-lagged effects) cannot be simply aggregated, for example, by means of common fixed or random effects analysis. However, continuous time math, which is applied in CoTiMA', can be used to extrapolate or intrapolate the results from all studies to any desired time lag. By this, effects obtained in studies that used different time intervals can be meta-analyzed. CoTiMA fits models to empirical data using the structural equation model (SEM) package ctsem', the effects specified in a SEM are related to parameters that are not directly included in the model (i.e., continuous time parameters; together, they represent the continuous time structural equation model, CTSEM). Statistical model comparisons and significance tests are then performed on the continuous time parameter estimates. CoTiMA also allows analysis of publication bias (Egger's test, PET-PEESE estimates, zcurve analysis etc.) and analysis of statistical power (post hoc power, required sample sizes). See Dormann, C., Guthier, C., & Cortina, J. M. (2019) <doi:10.1177/1094428119847277>. and Guthier, C., Dormann, C., & Voelkle, M. C. (2020) <doi:10.1037/bul0000304>.
Fits a spatio-temporal finite mixture model using TMB'. Covariate, spatial and temporal random effects can be incorporated into the gating formula using multinomial logistic regression, the expert formula using a generalized linear mixed model framework, or both.
Dataset containing cumulative COVID-19 deaths (absolute and per 100,000 pop) at the regional level (mostly NUTS 3) for 31 EU/EFTA countries.
Cases are matched to controls in an efficient, optimal and computationally flexible way. It uses the idea of sub-sampling in the level of the case, by creating pseudo-observations of controls. The user can select between replacement and without replacement, the number of controls, and several covariates to match upon. See Mamouris (2021) <doi:10.1186/s12874-021-01256-3> for an overview.
This package provides a toolkit for computing and visualizing CAPL-2 (Canadian Assessment of Physical Literacy, Second Edition; <https://www.capl-eclp.ca>) scores and interpretations from raw data.
Makes univariate, multivariate, or random fields simulations precise and simple. Just select the desired time series or random fieldsâ properties and it will do the rest. CoSMoS is based on the framework described in Papalexiou (2018, <doi:10.1016/j.advwatres.2018.02.013>), extended for random fields in Papalexiou and Serinaldi (2020, <doi:10.1029/2019WR026331>), and further advanced in Papalexiou et al. (2021, <doi:10.1029/2020WR029466>) to allow fine-scale space-time simulation of storms (or even cyclone-mimicking fields).
This package provides a set of fast tools for converting a textual corpus into a set of normalized tables. Users may make use of the udpipe back end with no external dependencies, or a Python back ends with spaCy <https://spacy.io>. Exposed annotation tasks include tokenization, part of speech tagging, named entity recognition, and dependency parsing.
This package provides tools for detecting cellwise outliers and robust methods to analyze data which may contain them. Contains the implementation of the algorithms described in Rousseeuw and Van den Bossche (2018) <doi:10.1080/00401706.2017.1340909> (open access) Hubert et al. (2019) <doi:10.1080/00401706.2018.1562989> (open access), Raymaekers and Rousseeuw (2021) <doi:10.1080/00401706.2019.1677270> (open access), Raymaekers and Rousseeuw (2021) <doi:10.1007/s10994-021-05960-5> (open access), Raymaekers and Rousseeuw (2021) <doi:10.52933/jdssv.v1i3.18> (open access), Raymaekers and Rousseeuw (2022) <doi:10.1080/01621459.2023.2267777> (open access) Rousseeuw (2022) <doi:10.1016/j.ecosta.2023.01.007> (open access). Examples can be found in the vignettes: "DDC_examples", "MacroPCA_examples", "wrap_examples", "transfo_examples", "DI_examples", "cellMCD_examples" , "Correspondence_analysis_examples", and "cellwise_weights_examples".
This package performs regression analysis for longitudinal count data, allowing for serial dependence among observations from a given individual and two dimensional random effects on the linear predictor. Estimation is via maximization of the exact likelihood of a suitably defined model. Missing values and unbalanced data are allowed. Details can be found in the accompanying scientific papers: Goncalves & Cabral (2021, Journal of Statistical Software, <doi:10.18637/jss.v099.i03>) and Goncalves et al. (2007, Computational Statistics & Data Analysis, <doi:10.1016/j.csda.2007.03.002>).
This package performs multiple comparison procedures on curve observations among different treatment groups. The methods are applicable in a variety of situations (such as independent groups with equal or unequal sample sizes, or repeated measures) by using parametric bootstrap. References to these procedures can be found at Konietschke, Gel, and Brunner (2014) <doi:10.1090/conm/622/12431> and Westfall (2011) <doi:10.1080/10543406.2011.607751>.
This package provides a function for fitting Poisson and negative binomial regression models when the number of parameters exceeds the sample size, using the the generalized monotone incremental forward stagewise method.
This package provides a collection of user-submitted functions to aid in the analysis of hydrological data, particularly for users in Canada. The functions focus on the use of Canadian data sets, and are suited to Canadian hydrology, such as the important cold region hydrological processes and will work with Canadian hydrological models. The functions are grouped into several themes, currently including Statistical hydrology, Basic data manipulations, Visualization, and Spatial hydrology. Functions developed by the Floodnet project are also included. CSHShydRology has been developed with the assistance of the Canadian Society for Hydrological Sciences (CSHS) which is an affiliated society of the Canadian Water Resources Association (CWRA). As of version 1.2.6, functions now fail gracefully when attempting to download data from a url which is unavailable.
Copula-based imputation methods: parametric and nonparametric algorithms for missing multivariate data through conditional copulas.
This package contains the Correlates of State Policy Project dataset (+ codebook) assembled by Marty P. Jordan and Matt Grossmann (2020) <http://ippsr.msu.edu/public-policy/correlates-state-policy> used by the cspp package. The Correlates data contains over 3000 variables across more than 100 years that pertain to state politics and policy in the United States.
Examine any number of time series data frames to identify instances in which various criteria are met within specified time frames. In clinical medicine, these types of events are often called "constellations of signs and symptoms", because a single condition depends on a series of events occurring within a certain amount of time of each other. This package was written to work with any number of time series data frames and is optimized for speed to work well with data frames with millions of rows.
This package provides harmonized and non-harmonized population pyramid datasets from the Indonesian population censuses (1971â 2020), along with tools for visualization and an interactive shiny'-based explorer application. Data are processed from IPUMS International (1971â 2010) and the Population Census 2020 (BPS Indonesia).
Fast categorization of items based on external code data identified by regular expressions. A typical use case considers patient with medically coded data, such as codes from the International Classification of Diseases ('ICD') or the Anatomic Therapeutic Chemical ('ATC') classification system. Functions of the package relies on a triad of objects: (1) case data with unit id:s and possible dates of interest; (2) external code data for corresponding units in (1) and with optional dates of interest and; (3) a classification scheme ('classcodes object) with regular expressions to identify and categorize relevant codes from (2). It is easy to introduce new classification schemes ('classcodes objects) or to use default schemes included in the package. Use cases includes patient categorization based on comorbidity indices such as Charlson', Elixhauser', RxRisk V', or the comorbidity-polypharmacy score (CPS), as well as adverse events after hip and knee replacement surgery.
This creates code names that a user can consider for their organizations, their projects, themselves, people in their organizations or projects, or whatever else. The user can also supply a numeric seed (and even a character seed) for maximum reproducibility. Use is simple and the code names produced come in various types too, contingent on what the user may be desiring as a code name or nickname.
Method for fitting a cellwise robust linear M-regression model (CRM, Filzmoser et al. (2020) <DOI:10.1016/j.csda.2020.106944>) that yields both a map of cellwise outliers consistent with the linear model, and a vector of regression coefficients that is robust against vertical outliers and leverage points. As a by-product, the method yields an imputed data set that contains estimates of what the values in cellwise outliers would need to amount to if they had fit the model. The package also provides diagnostic tools for analyzing casewise and cellwise outliers using sparse directions of maximal outlyingness (SPADIMO, Debruyne et al. (2019) <DOI:10.1007/s11222-018-9831-5>).
Datasets related to the Comrades Marathon used in the book Antony Unwin (2024, ISBN:978-0367674007) "Getting (more out of) Graphics". The main dataset contains the times of every runner that finished in the time limit for each year the race was run.
This package provides a collection of functions to extract citation information from R packages and to deal with files in citation file format (<https://citation-file-format.github.io/>), extending the functionality already provided by the citation() function in the utils package.
Calculates and visualises cumulative percent decay curves, which are typically calculated from metagenomic taxonomic profiles. These can be used to estimate the level of expected endogenous taxa at different abundance levels retrieved from metagenomic samples, when comparing to samples of known sampling site or source. Method described in Fellows Yates, J. A. et. al. (2021) Proceedings of the National Academy of Sciences USA <doi:10.1073/pnas.2021655118>.