Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Provided R functions for working with the Conditional Negative Binomial distribution.
Integration of Earth system data from various sources is a challenging task. Except for their qualitative heterogeneity, different data records exist for describing similar Earth system process at different spatio-temporal scales. Data inter-comparison and validation are usually performed at a single spatial or temporal scale, which could hamper the identification of potential discrepancies in other scales. csa package offers a simple, yet efficient, graphical method for synthesizing and comparing observed and modelled data across a range of spatio-temporal scales. Instead of focusing at specific scales, such as annual means or original grid resolution, we examine how their statistical properties change across spatio-temporal continuum.
Many correlation coefficient related functions are offered, such as correlations, partial correlations and hypothesis testing using asymptotic tests and computer intensive methods (bootstrap and permutation). References include Mardia K.V., Kent J.T. and Bibby J.M. (1979). "Multivariate Analysis". ISBN: 978-0124712522. London: Academic Press and Owen A. B. (2001). "Empirical likelihood". Chapman and Hall/CRC Press. ISBN: 9781584880714.
Automatize downloading of meteorological and hydrological data from publicly available repositories: OGIMET (<http://ogimet.com/index.phtml.en>), University of Wyoming - atmospheric vertical profiling data (<http://weather.uwyo.edu/upperair/>), Polish Institute of Meteorology and Water Management - National Research Institute (<https://danepubliczne.imgw.pl>), and National Oceanic & Atmospheric Administration (NOAA). This package also allows for searching geographical coordinates for each observation and calculate distances to the nearest stations.
This small library contains a series of simple tools for constructing and manipulating confounded and fractional factorial designs.
Estimation, based on conditional maximum likelihood, of the quadratic exponential model proposed by Bartolucci, F. & Nigro, V. (2010, Econometrica) <DOI:10.3982/ECTA7531> and of a simplified and a modified version of this model. The quadratic exponential model is suitable for the analysis of binary longitudinal data when state dependence (further to the effect of the covariates and a time-fixed individual intercept) has to be taken into account. Therefore, this is an alternative to the dynamic logit model having the advantage of easily allowing conditional inference in order to eliminate the individual intercepts and then getting consistent estimates of the parameters of main interest (for the covariates and the lagged response). The simplified version of this model does not distinguish, as the original model does, between the last time occasion and the previous occasions. The modified version formulates in a different way the interaction terms and it may be used to test in a easy way state dependence as shown in Bartolucci, F., Nigro, V. & Pigini, C. (2018, Econometric Reviews) <DOI:10.1080/07474938.2015.1060039>. The package also includes estimation of the dynamic logit model by a pseudo conditional estimator based on the quadratic exponential model, as proposed by Bartolucci, F. & Nigro, V. (2012, Journal of Econometrics) <DOI:10.1016/j.jeconom.2012.03.004>. For large time dimensions of the panel, the computation of the proposed models involves a recursive function from Krailo M. D., & Pike M. C. (1984, Journal of the Royal Statistical Society. Series C (Applied Statistics)) and Bartolucci F., Valentini, F. & Pigini C. (2021, Computational Economics <DOI:10.1007/s10614-021-10218-2>.
Check your R code for some of the most common layout flaws. Many tried to teach us how to write code less dreadful, be it implicitly as B. W. Kernighan and D. M. Ritchie (1988) <ISBN:0-13-110362-8> in The C Programming Language did, be it explicitly as R.C. Martin (2008) <ISBN:0-13-235088-2> in Clean Code: A Handbook of Agile Software Craftsmanship did. So we should check our code for files too long or wide, functions with too many lines, too wide lines, too many arguments or too many levels of nesting. Note: This is not a static code analyzer like pylint or the like. Checkout <https://cran.r-project.org/package=lintr> instead.
This package contains the CONCOR (CONvergence of iterated CORrelations) algorithm and a series of supplemental functions for easy running, plotting, and blockmodeling. The CONCOR algorithm is used on social network data to identify network positions based off a definition of structural equivalence; see Breiger, Boorman, and Arabie (1975) <doi:10.1016/0022-2496(75)90028-0> and Wasserman and Faust's book Social Network Analysis: Methods and Applications (1994). This version allows multiple relationships for the same set of nodes and uses both incoming and outgoing ties to find positions.
Enable the use of Shepherd.js to create tours in Shiny applications.
Apply and visualize conditional formatting to data frames in R. It renders a data frame with cells formatted according to criteria defined by rules, using a tidy evaluation syntax. The table is printed either opening a web browser or within the RStudio viewer if available. The conditional formatting rules allow to highlight cells matching a condition or add a gradient background to a given column. This package supports both HTML and LaTeX outputs in knitr reports, and exporting to an xlsx file.
Facilitates local polynomial regression for state dependent covariates in state-space models. The functionality can also be used from C++ based model builder tools such as Rcpp'/'inline', TMB', or JAGS'.
Clustering methods, which (if asked) can provide step-by-step explanations of the algorithms used, as described in Ezugwu et. al., (2022) <doi:10.1016/j.engappai.2022.104743>; and datasets to test them on, which highlight the strengths and weaknesses of each technique, as presented in the clustering section of scikit-learn (Pedregosa et al., 2011) <https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html>.
Visualize the connectedness of factors in two-way tables. Perform two-way filtering to improve the degree of connectedness. See Weeks & Williams (1964) <doi:10.1080/00401706.1964.10490188>.
Facilitates the identification of counterfactual queries in structural causal models via the ID* and IDC* algorithms by Shpitser, I. and Pearl, J. (2007, 2008) <doi:10.48550/arXiv.1206.5294>, <https://jmlr.org/papers/v9/shpitser08a.html>. Provides a simple interface for defining causal diagrams and counterfactual conjunctions. Construction of parallel worlds graphs and counterfactual graphs is carried out automatically based on the counterfactual query and the causal diagram. See Tikka, S. (2023) <doi:10.32614/RJ-2023-053> for a tutorial of the package.
This package provides a curated list of copepod-fish ecological interaction records. It contains the taxonomy of the copepod and the fish and the publication from which the information was obtained. This database contains only marine and brackish water fish species. It excludes fish species that inhabit only freshwater.
Non-linear/linear hybrid method for batch-effect correction that uses Mutual Nearest Neighbors (MNNs) to identify similar cells between datasets. Reference: Loza M. et al. (NAR Genomics and Bioinformatics, 2020) <doi:10.1093/nargab/lqac022>.
Builds co-occurrence matrices based on spatial raster data. It includes creation of weighted co-occurrence matrices (wecoma) and integrated co-occurrence matrices (incoma; Vadivel et al. (2007) <doi:10.1016/j.patrec.2007.01.004>).
Constrained randomization by Raab and Butcher (2001) <doi:10.1002/1097-0258(20010215)20:3%3C351::AID-SIM797%3E3.0.CO;2-C> is suitable for cluster randomized trials (CRTs) with a small number of clusters (e.g., 20 or fewer). The procedure of constrained randomization is based on the baseline values of some cluster-level covariates specified. The intervention effect on the individual outcome can then be analyzed through clustered permutation test introduced by Gail, et al. (1996) <doi:10.1002/(SICI)1097-0258(19960615)15:11%3C1069::AID-SIM220%3E3.0.CO;2-Q>. Motivated from Li, et al. (2016) <doi:10.1002/sim.7410>, the package performs constrained randomization on the baseline values of cluster-level covariates and clustered permutation test on the individual-level outcomes for cluster randomized trials.
Code for a variety of nonlinear conditional independence tests: Kernel conditional independence test (Zhang et al., UAI 2011, <arXiv:1202.3775>), Residual Prediction test (based on Shah and Buehlmann, <arXiv:1511.03334>), Invariant environment prediction, Invariant target prediction, Invariant residual distribution test, Invariant conditional quantile prediction (all from Heinze-Deml et al., <arXiv:1706.08576>).
Provide functions for overlaps clustering, fuzzy clustering and interval-valued data manipulation. The package implement the following algorithms: OKM (Overlapping Kmeans) from Cleuziou, G. (2007) <doi:10.1109/icpr.2008.4761079> ; NEOKM (Non-exhaustive overlapping Kmeans) from Whang, J. J., Dhillon, I. S., and Gleich, D. F. (2015) <doi:10.1137/1.9781611974010.105> ; Fuzzy Cmeans from Bezdek, J. C. (1981) <doi:10.1007/978-1-4757-0450-1> ; Fuzzy I-Cmeans from de A.T. De Carvalho, F. (2005) <doi:10.1016/j.patrec.2006.08.014>.
Advertisers use a variety of online marketing channels to reach consumers and they want to know the degree each channel contributes to their marketing success. This is called online multi-channel attribution problem. This package contains a probabilistic algorithm for the attribution problem. The model uses a k-order Markov representation to identify structural correlations in the customer journey data. The package also contains three heuristic algorithms (first-touch, last-touch and linear-touch approach) for the same problem. The algorithms are implemented in C++.
Supports quantitative research in scientometrics and bibliometrics. Provides various tools for preprocessing bibliographic data retrieved, e.g., from Elsevier's Scopus, computing bibliometric impact of individuals, or modelling phenomena encountered in the social sciences. This package is deprecated; see agop instead.
Variable selection for Gaussian model-based clustering as implemented in the mclust package. The methodology allows to find the (locally) optimal subset of variables in a data set that have group/cluster information. A greedy or headlong search can be used, either in a forward-backward or backward-forward direction, with or without sub-sampling at the hierarchical clustering stage for starting mclust models. By default the algorithm uses a sequential search, but parallelisation is also available.
Geometric circle fitting with Levenberg-Marquardt (a, b, R), Levenberg-Marquardt reduced (a, b), Landau, Spath and Chernov-Lesort. Algebraic circle fitting with Taubin, Kasa, Pratt and Fitzgibbon-Pilu-Fisher. Geometric ellipse fitting with ellipse LMG (geometric parameters) and conic LMA (algebraic parameters). Algebraic ellipse fitting with Fitzgibbon-Pilu-Fisher and Taubin.