_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-codalm 0.1.3
Propagated dependencies: r-squarem@2021.1 r-future-apply@1.20.0 r-future@1.68.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/jfiksel/codalm
Licenses: GPL 2
Build system: r
Synopsis: Transformation-Free Linear Regression for Compositional Outcomes and Predictors
Description:

This package implements the expectation-maximization (EM) algorithm as described in Fiksel et al. (2022) <doi:10.1111/biom.13465> for transformation-free linear regression for compositional outcomes and predictors.

r-causaldrf 0.4.2
Propagated dependencies: r-survey@4.4-8 r-mgcv@1.9-4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=causaldrf
Licenses: Expat
Build system: r
Synopsis: Estimating Causal Dose Response Functions
Description:

This package provides functions and data to estimate causal dose response functions given continuous, ordinal, or binary treatments. A description of the methods is given in Galagate (2016) <https://drum.lib.umd.edu/handle/1903/18170>.

r-coda-plot 0.1.10
Propagated dependencies: r-ggplot2@4.0.1 r-coda-base@1.0.3
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=coda.plot
Licenses: GPL 2+ GPL 3+
Build system: r
Synopsis: Plots for Compositional Data
Description:

This package provides a collection of easy-to-use functions for creating visualizations of compositional data using ggplot2'. Includes support for common plotting techniques in compositional data analysis.

r-crsnls 0.2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=crsnls
Licenses: GPL 2
Build system: r
Synopsis: Nonlinear Regression Parameters Estimation by 'CRS4HC' and 'CRS4HCe'
Description:

This package provides functions for nonlinear regression parameters estimation by algorithms based on Controlled Random Search algorithm. Both functions (crs4hc(), crs4hce()) adapt current search strategy by four heuristics competition. In addition, crs4hce() improves adaptability by adaptive stopping condition.

r-catastro 0.4.1
Propagated dependencies: r-xml2@1.5.0 r-tibble@3.3.0 r-terra@1.8-86 r-stringi@1.8.7 r-sf@1.0-23 r-rappdirs@0.3.3 r-mapspain@1.0.0 r-httr2@1.2.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://ropenspain.github.io/CatastRo/
Licenses: GPL 2
Build system: r
Synopsis: Interface to the API 'Sede Electronica Del Catastro'
Description:

Access public spatial data available under the INSPIRE directive. Tools for downloading references and addresses of properties, as well as map images.

r-ctsfeatures 1.2.2
Propagated dependencies: r-tsibble@1.2.0 r-rdpack@2.6.4 r-latex2exp@0.9.6 r-ggplot2@4.0.1 r-bolstad2@1.0-29 r-astsa@2.3
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=ctsfeatures
Licenses: GPL 2
Build system: r
Synopsis: Analyzing Categorical Time Series
Description:

An implementation of several functions for feature extraction in categorical time series datasets. Specifically, some features related to marginal distributions and serial dependence patterns can be computed. These features can be used to feed clustering and classification algorithms for categorical time series, among others. The package also includes some interesting datasets containing biological sequences. Practitioners from a broad variety of fields could benefit from the general framework provided by ctsfeatures'.

r-cicerone 1.0.4
Propagated dependencies: r-shiny@1.11.1 r-r6@2.6.1 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cicerone.john-coene.com/
Licenses: Expat
Build system: r
Synopsis: Provide Tours of 'Shiny' Applications
Description:

Provide step by step guided tours of Shiny applications.

r-cego 2.4.4
Propagated dependencies: r-quadprog@1.5-8 r-matrix@1.7-4 r-mass@7.3-65 r-fastmatch@1.1-6 r-deoptim@2.2-8 r-anticlust@0.8.13
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CEGO
Licenses: GPL 3+
Build system: r
Synopsis: Combinatorial Efficient Global Optimization
Description:

Model building, surrogate model based optimization and Efficient Global Optimization in combinatorial or mixed search spaces.

r-cover2 1.0.0
Propagated dependencies: r-tidyr@1.3.1 r-terra@1.8-86 r-mgc@2.0.2 r-lubridate@1.9.4 r-jpeg@0.1-11 r-dplyr@1.1.4 r-autothresholdr@1.4.3
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=coveR2
Licenses: Expat
Build system: r
Synopsis: Process Digital Cover Photography Images of Tree Crowns
Description:

Process Digital Cover Photography images of tree canopies to get canopy attributes like Foliage Cover and Leaf Area Index. Detailed description of the methods in Chianucci et al. (2022) <doi:10.1007/s00468-018-1666-3>.

r-controlfunctioniv 0.1.1
Propagated dependencies: r-orthodr@0.6.8 r-formula@1.2-5 r-dr@3.0.11 r-aer@1.2-15
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/zijguo/controlfunctionIV
Licenses: GPL 3
Build system: r
Synopsis: Control Function Methods with Possibly Invalid Instrumental Variables
Description:

Inference with control function methods for nonlinear outcome models when the model is known ('Guo and Small (2016) <arXiv:1602.01051>) and when unknown but semiparametric ('Li and Guo (2021) <arXiv:2010.09922>).

r-clhs 0.9.2
Propagated dependencies: r-sf@1.0-23 r-reshape2@1.4.5 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-raster@3.6-32 r-plyr@1.8.9 r-ggplot2@4.0.1 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/pierreroudier/clhs/
Licenses: GPL 2+
Build system: r
Synopsis: Conditioned Latin Hypercube Sampling
Description:

Conditioned Latin hypercube sampling, as published by Minasny and McBratney (2006) <DOI:10.1016/j.cageo.2005.12.009>. This method proposes to stratify sampling in presence of ancillary data. An extension of this method, which propose to associate a cost to each individual and take it into account during the optimisation process, is also proposed (Roudier et al., 2012, <DOI:10.1201/b12728>).

r-cdse 0.3.0
Propagated dependencies: r-terra@1.8-86 r-sf@1.0-23 r-lutz@0.3.2 r-lubridate@1.9.4 r-jsonlite@2.0.0 r-httr2@1.2.1 r-geojsonsf@2.0.5
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://zivankaraman.github.io/CDSE/
Licenses: AGPL 3
Build system: r
Synopsis: 'Copernicus Data Space Ecosystem' API Wrapper
Description:

This package provides interface to the Copernicus Data Space Ecosystem API <https://dataspace.copernicus.eu/analyse/apis>, mainly for searching the catalog of available data from Copernicus Sentinel missions and obtaining the images for just the area of interest based on selected spectral bands. The package uses the Sentinel Hub REST API interface <https://dataspace.copernicus.eu/analyse/apis/sentinel-hub> that provides access to various satellite imagery archives. It allows you to access raw satellite data, rendered images, statistical analysis, and other features. This package is in no way officially related to or endorsed by Copernicus.

r-cramer 0.9-4
Propagated dependencies: r-rcpp@1.1.0 r-boot@1.3-32
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=cramer
Licenses: GPL 2+
Build system: r
Synopsis: Multivariate Nonparametric Cramer-Test for the Two-Sample-Problem
Description:

This package provides R routine for the so called two-sample Cramer-Test. This nonparametric two-sample-test on equality of the underlying distributions can be applied to multivariate data as well as univariate data. It offers two possibilities to approximate the critical value both of which are included in this package.

r-ceemdanml 0.1.0
Propagated dependencies: r-tseries@0.10-58 r-rlibeemd@1.4.4 r-pso@1.0.4 r-neuralnet@1.44.2 r-lsts@2.1 r-forecast@8.24.0 r-fints@0.4-9 r-fgarch@4052.93 r-earth@5.3.4 r-e1071@1.7-16 r-caret@7.0-1 r-atsa@3.1.2.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CEEMDANML
Licenses: GPL 3
Build system: r
Synopsis: CEEMDAN Decomposition Based Hybrid Machine Learning Models
Description:

Noise in the time-series data significantly affects the accuracy of the Machine Learning (ML) models (Artificial Neural Network and Support Vector Regression are considered here). Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) decomposes the time series data into sub-series and help to improve the model performance. The models can achieve higher prediction accuracy than the traditional ML models. Two models have been provided here for time series forecasting. More information may be obtained from Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202>.

r-clusternomics 0.1.1
Propagated dependencies: r-plyr@1.8.9 r-mass@7.3-65 r-magrittr@2.0.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/evelinag/clusternomics
Licenses: Expat
Build system: r
Synopsis: Integrative Clustering for Heterogeneous Biomedical Datasets
Description:

Integrative context-dependent clustering for heterogeneous biomedical datasets. Identifies local clustering structures in related datasets, and a global clusters that exist across the datasets.

r-conmet 0.1.0
Propagated dependencies: r-waiter@0.2.5-1.927501b r-summarytools@1.1.4 r-stringr@1.6.0 r-shinywidgets@0.9.0 r-shinydashboard@0.7.3 r-shiny@1.11.1 r-semtools@0.5-7 r-purrr@1.2.0 r-openxlsx@4.2.8.1 r-lavaan@0.6-20 r-hmisc@5.2-4 r-foreign@0.8-90 r-dt@0.34.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=conmet
Licenses: GPL 3
Build system: r
Synopsis: Construct Measurement Evaluation Tool
Description:

With this package you can run ConMET locally in R. ConMET is an R-shiny application that facilitates performing and evaluating confirmatory factor analyses (CFAs) and is useful for running and reporting typical measurement models in applied psychology and management journals. ConMET automatically creates, compares and summarizes CFA models. Most common fit indices (E.g., CFI and SRMR) are put in an overview table. ConMET also allows to test for common method variance. The application is particularly useful for teaching and instruction of measurement issues in survey research. The application uses the lavaan package (Rosseel, 2012) to run CFAs.

r-codez 1.0.0
Propagated dependencies: r-tictoc@1.2.1 r-tensorflow@2.20.0 r-scales@1.4.0 r-readr@2.1.6 r-purrr@1.2.0 r-philentropy@0.10.0 r-narray@0.5.2 r-moments@0.14.1 r-modeest@2.4.0 r-lubridate@1.9.4 r-keras@2.16.0 r-imputets@3.4 r-greybox@2.0.7 r-ggplot2@4.0.1 r-fastdummies@1.7.5 r-fancova@0.6-1 r-entropy@1.3.2 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://rpubs.com/giancarlo_vercellino/codez
Licenses: GPL 3
Build system: r
Synopsis: Seq2Seq Encoder-Decoder Model for Time-Feature Analysis Based on Tensorflow
Description:

Proposes Seq2seq Time-Feature Analysis using an Encoder-Decoder to project into latent space and a Forward Network to predict the next sequence.

r-ctmle 0.1.2
Propagated dependencies: r-tmle@2.1.1 r-superlearner@2.0-29 r-glmnet@4.1-10
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=ctmle
Licenses: GPL 2
Build system: r
Synopsis: Collaborative Targeted Maximum Likelihood Estimation
Description:

This package implements the general template for collaborative targeted maximum likelihood estimation. It also provides several commonly used C-TMLE instantiation, like the vanilla/scalable variable-selection C-TMLE (Ju et al. (2017) <doi:10.1177/0962280217729845>) and the glmnet-C-TMLE algorithm (Ju et al. (2017) <arXiv:1706.10029>).

r-copula-markov 2.9
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=Copula.Markov
Licenses: GPL 2
Build system: r
Synopsis: Copula-Based Estimation and Statistical Process Control for Serially Correlated Time Series
Description:

Estimation and statistical process control are performed under copula-based time-series models. Available are statistical methods in Long and Emura (2014 JCSA), Emura et al. (2017 Commun Stat-Simul) <DOI:10.1080/03610918.2015.1073303>, Huang and Emura (2021 Commun Stat-Simul) <DOI:10.1080/03610918.2019.1602647>, Lin et al. (2021 Comm Stat-Simul) <DOI:10.1080/03610918.2019.1652318>, Sun et al. (2020 JSS Series in Statistics)<DOI:10.1007/978-981-15-4998-4>, and Huang and Emura (2021, in revision).

r-cequre 1.5
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=cequre
Licenses: GPL 2+
Build system: r
Synopsis: Censored Quantile Regression & Monotonicity-Respecting Restoring
Description:

Perform censored quantile regression of Huang (2010) <doi:10.1214/09-AOS771>, and restore monotonicity respecting via adaptive interpolation for dynamic regression of Huang (2017) <doi:10.1080/01621459.2016.1149070>. The monotonicity-respecting restoration applies to general dynamic regression models including (uncensored or censored) quantile regression model, additive hazards model, and dynamic survival models of Peng and Huang (2007) <doi:10.1093/biomet/asm058>, among others.

r-compoundevents 0.3.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CompoundEvents
Licenses: GPL 3
Build system: r
Synopsis: Statistical Modeling of Compound Events
Description:

This package provides tools for extracting occurrences, assessing potential driving factors, predicting occurrences, and quantifying impacts of compound events in hydrology and climatology. Please see Hao Zengchao et al. (2019) <doi:10.1088/1748-9326/ab4df5>.

r-chromer 0.10
Propagated dependencies: r-tibble@3.3.0 r-httr@1.4.7 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://docs.ropensci.org/chromer/
Licenses: Expat
Build system: r
Synopsis: Interface to Chromosome Counts Database API
Description:

This package provides a programmatic interface to the Chromosome Counts Database (<https://ccdb.tau.ac.il/>), Rice et al. (2014) <doi:10.1111/nph.13191>. This package is part of the ROpenSci suite (<https://ropensci.org>).

r-cytoprofile 0.2.3
Propagated dependencies: r-xgboost@1.7.11.1 r-tidyr@1.3.1 r-reshape2@1.4.5 r-randomforest@4.7-1.2 r-proc@1.19.0.1 r-plot3d@1.4.2 r-pheatmap@1.0.13 r-mixomics@6.34.0 r-lifecycle@1.0.4 r-gridextra@2.3 r-ggrepel@0.9.6 r-ggplot2@4.0.1 r-e1071@1.7-16 r-dplyr@1.1.4 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/saraswatsh/CytoProfile
Licenses: GPL 2+
Build system: r
Synopsis: Cytokine Profiling Analysis Tool
Description:

This package provides comprehensive cytokine profiling analysis through quality control using biologically meaningful cutoffs on raw cytokine measurements and by testing for distributional symmetry to recommend appropriate transformations. Offers exploratory data analysis with summary statistics, enhanced boxplots, and barplots, along with univariate and multivariate analytical capabilities for in-depth cytokine profiling such as Principal Component Analysis based on Andrzej MaÄ kiewicz and Waldemar Ratajczak (1993) <doi:10.1016/0098-3004(93)90090-R>, Sparse Partial Least Squares Discriminant Analysis based on Lê Cao K-A, Boitard S, and Besse P (2011) <doi:10.1186/1471-2105-12-253>, Random Forest based on Breiman, L. (2001) <doi:10.1023/A:1010933404324>, and Extreme Gradient Boosting based on Tianqi Chen and Carlos Guestrin (2016) <doi:10.1145/2939672.2939785>.

r-ctsmtmb 1.0.1
Propagated dependencies: r-zigg@0.0.2 r-tmb@1.9.18 r-stringr@1.6.0 r-rtmb@1.8 r-rcppxptrutils@0.1.3 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-r6@2.6.1 r-patchwork@1.3.2 r-matrix@1.7-4 r-ggplot2@4.0.1 r-ggfortify@0.4.19 r-geomtextpath@0.2.0 r-deriv@4.2.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/phillipbvetter/ctsmTMB
Licenses: GPL 3
Build system: r
Synopsis: Continuous Time Stochastic Modelling using Template Model Builder
Description:

Perform state and parameter inference, and forecasting, in stochastic state-space systems using the ctsmTMB class. This class, built with the R6 package, provides a user-friendly interface for defining and handling state-space models. Inference is based on maximum likelihood estimation, with derivatives efficiently computed through automatic differentiation enabled by the TMB'/'RTMB packages (Kristensen et al., 2016) <doi:10.18637/jss.v070.i05>. The available inference methods include Kalman filters, in addition to a Laplace approximation-based smoothing method. For further details of these methods refer to the documentation of the CTSMR package <https://ctsm.info/ctsmr-reference.pdf> and Thygesen (2025) <doi:10.48550/arXiv.2503.21358>. Forecasting capabilities include moment predictions and stochastic path simulations, both implemented in C++ using Rcpp (Eddelbuettel et al., 2018) <doi:10.1080/00031305.2017.1375990> for computational efficiency.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283