Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Check for namespace collisions between a string input (your function or package name) and half a million packages and functions on CRAN.
This package provides tools for implementing covariate-adjusted response-adaptive procedures for binary, continuous and survival responses. Users can flexibly choose between two functions based on their specific needs for each procedure: use real patient data from clinical trials to compute allocation probabilities directly, or use built-in simulation functions to generate synthetic patient data. Detailed methodologies and algorithms used in this package are described in the following references: Zhang, L. X., Hu, F., Cheung, S. H., & Chan, W. S. (2007)<doi:10.1214/009053606000001424> Zhang, L. X. & Hu, F. (2009) <doi:10.1007/s11766-009-0001-6> Hu, J., Zhu, H., & Hu, F. (2015) <doi:10.1080/01621459.2014.903846> Zhao, W., Ma, W., Wang, F., & Hu, F. (2022) <doi:10.1002/pst.2160> Mukherjee, A., Jana, S., & Coad, S. (2024) <doi:10.1177/09622802241287704>.
This package provides functions to check whether a vector of p-values respects the assumptions of FDR (false discovery rate) control procedures and to compute adjusted p-values.
This package contains the CONCOR (CONvergence of iterated CORrelations) algorithm and a series of supplemental functions for easy running, plotting, and blockmodeling. The CONCOR algorithm is used on social network data to identify network positions based off a definition of structural equivalence; see Breiger, Boorman, and Arabie (1975) <doi:10.1016/0022-2496(75)90028-0> and Wasserman and Faust's book Social Network Analysis: Methods and Applications (1994). This version allows multiple relationships for the same set of nodes and uses both incoming and outgoing ties to find positions.
Procedures for making continuous cartogram. Procedures available are: flow based cartogram (Gastner & Newman (2004) <doi:10.1073/pnas.0400280101>), fast flow based cartogram (Gastner, Seguy & More (2018) <doi:10.1073/pnas.1712674115>), rubber band based cartogram (Dougenik et al. (1985) <doi:10.1111/j.0033-0124.1985.00075.x>).
This package provides functions for computing and visualizing generalized canonical discriminant analyses and canonical correlation analysis for a multivariate linear model. Traditional canonical discriminant analysis is restricted to a one-way MANOVA design and is equivalent to canonical correlation analysis between a set of quantitative response variables and a set of dummy variables coded from the factor variable. The candisc package generalizes this to higher-way MANOVA designs for all factors in a multivariate linear model, computing canonical scores and vectors for each term. The graphic functions provide low-rank (1D, 2D, 3D) visualizations of terms in an mlm via the plot.candisc and heplot.candisc methods. Related plots are now provided for canonical correlation analysis when all predictors are quantitative. Methods for linear discriminant analysis are now included.
This package provides a daily counts of the Coronavirus (COVID19) cases by districts and country. Data source: Epidemiological Unit, Ministry of Health, Sri Lanka <https://www.epid.gov.lk/web/>.
Perform censored quantile regression of Huang (2010) <doi:10.1214/09-AOS771>, and restore monotonicity respecting via adaptive interpolation for dynamic regression of Huang (2017) <doi:10.1080/01621459.2016.1149070>. The monotonicity-respecting restoration applies to general dynamic regression models including (uncensored or censored) quantile regression model, additive hazards model, and dynamic survival models of Peng and Huang (2007) <doi:10.1093/biomet/asm058>, among others.
Supports analysis of trends in climate change, ecological and crop modelling.
This package provides a tool for causal meta-analysis. This package implements the aggregation formulas and inference methods proposed in Berenfeld et al. (2025) <doi:10.48550/arXiv.2505.20168>. Users can input aggregated data across multiple studies and compute causally meaningful aggregated effects of their choice (risk difference, risk ratio, odds ratio, etc) under user-specified population weighting. The built-in function camea() allows to obtain precise variance estimates for these effects and to compare the latter to a classical meta-analysis aggregate, the random effect model, as implemented in the metafor package <https://CRAN.R-project.org/package=metafor>.
Obtain coordinate system metadata from various data formats. There are functions to extract a CRS (coordinate reference system, <https://en.wikipedia.org/wiki/Spatial_reference_system>) in EPSG (European Petroleum Survey Group, <http://www.epsg.org/>), PROJ4 <https://proj.org/>, or WKT2 (Well-Known Text 2, <http://docs.opengeospatial.org/is/12-063r5/12-063r5.html>) forms. This is purely for getting simple metadata from in-memory formats, please use other tools for out of memory data sources.
Offers a set of objects tailored to simplify working with choice data. It enables the computation of choice probabilities and the likelihood of various types of choice models based on given data.
Cox model inference for relative hazard and covariate-specific pure risk estimated from stratified and unstratified case-cohort data as described in Etievant, L., Gail, M.H. (Lifetime Data Analysis, 2024) <doi:10.1007/s10985-024-09621-2>.
Several authors have proposed methods for constructing simultaneous confidence intervals for multinomial proportions. The package implements seven classical approachesâ Wilson, Quesenberry and Hurst, Goodman, Wald (with and without continuity correction), Fitzpatrick and Scott, and Sison and Glazâ along with Bayesian methods based on Dirichlet models. Both equal and unequal Dirichlet priors are supported, providing a broad framework for inference, data analysis, and sensitivity evaluation.
We present corto (Correlation Tool), a simple package to infer gene regulatory networks and visualize master regulators from gene expression data using DPI (Data Processing Inequality) and bootstrapping to recover edges. An initial step is performed to calculate all significant edges between a list of source nodes (centroids) and target genes. Then all triplets containing two centroids and one target are tested in a DPI step which removes edges. A bootstrapping process then calculates the robustness of the network, eventually re-adding edges previously removed by DPI. The algorithm has been optimized to run outside a computing cluster, using a fast correlation implementation. The package finally provides functions to calculate network enrichment analysis from RNA-Seq and ATAC-Seq signatures as described in the article by Giorgi lab (2020) <doi:10.1093/bioinformatics/btaa223>.
Partitions data points (variables) into communities/clusters, similar to clustering algorithms such as k-means and hierarchical clustering. This package implements a clustering algorithm based on a new metric CORD, defined for high-dimensional parametric or semiparametric distributions. For more details see Bunea et al. (2020), Annals of Statistics <doi:10.1214/18-AOS1794>.
Tests on properties of space-time covariance functions. Tests on symmetry, separability and for assessing different forms of non-separability are available. Moreover tests on some classes of covariance functions, such that the classes of product-sum models, Gneiting models and integrated product models have been provided. It is the companion R package to the papers of Cappello, C., De Iaco, S., Posa, D., 2018, Testing the type of non-separability and some classes of space-time covariance function models <doi:10.1007/s00477-017-1472-2> and Cappello, C., De Iaco, S., Posa, D., 2020, covatest: an R package for selecting a class of space-time covariance functions <doi:10.18637/jss.v094.i01>.
C5.0 decision trees and rule-based models for pattern recognition that extend the work of Quinlan (1993, ISBN:1-55860-238-0).
This package provides functions to construct finite-sample calibrated predictive intervals for Bayesian models, following the approach in Barber et al. (2021) <doi:10.1214/20-AOS1965>. These intervals are calculated efficiently using importance sampling for the leave-one-out residuals. By default, the intervals will also reflect the relative uncertainty in the Bayesian model, using the locally-weighted conformal methods of Lei et al. (2018) <doi:10.1080/01621459.2017.1307116>.
The Core Microbiome refers to the group of microorganisms that are consistently present in a particular environment, habitat, or host species. These microorganisms play a crucial role in the functioning and stability of that ecosystem. Identifying these microorganisms can contribute to the emerging field of personalized medicine. The CoreMicrobiomeR is designed to facilitate the identification, statistical testing, and visualization of this group of microorganisms.This package offers three key functions to analyze and visualize microbial community data. This package has been developed based on the research papers published by Pereira et al.(2018) <doi:10.1186/s12864-018-4637-6> and Beule L, Karlovsky P. (2020) <doi:10.7717/peerj.9593>.
This package creates project specific directory and file templates that are written to a .Rprofile file. Upon starting a new R session, these templates can be used to streamline the creation of new directories that are standardized to the user's preferences and can include the initiation of a git repository, an RStudio R project, and project-local dependency management with the renv package.
Apply styles to tag elements directly and with the .style pronoun. Using the pronoun, styles are created within the context of a tag element. Change borders, backgrounds, text, margins, layouts, and more.
Original ctsem (continuous time structural equation modelling) functionality, based on the OpenMx software, as described in Driver, Oud, Voelkle (2017) <doi:10.18637/jss.v077.i05>, with updated details in vignette. Combines stochastic differential equations representing latent processes with structural equation measurement models. These functions were split off from the main package of ctsem', as the main package uses the rstan package as a backend now -- offering estimation options from max likelihood to Bayesian. There are nevertheless use cases for the wide format SEM style approach as offered here, particularly when there are no individual differences in observation timing and the number of individuals is large. For the main ctsem package, see <https://cran.r-project.org/package=ctsem>.
Computes confidence intervals for the positive predictive value (PPV) and negative predictive value (NPV) based on varied scenarios. In situations where the proportion of diseased subjects does not correspond to the disease prevalence (e.g. case-control studies), this package provides two types of solutions: 1) five methods for estimating confidence intervals for PPV and NPV via ratio of two binomial proportions including Gart & Nam (1988), Walter (1975), MOVER-J (Laud, 2017), Fieller (1954), and Bootstrap (Efron, 1979); 2) three direct methods that compute the confidence intervals including Pepe (2003), Zhou (2007), and Delta. In prospective studies where the proportion of diseased subjects is an unbiased estimate of the disease prevalence, this package provides several methods for calculating the confidence intervals for PPV and NPV including Clopper-Pearson, Wald, Wilson, Agresti-Coull, and Beta. See the Details and References sections in the corresponding functions.