Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Defines classes and methods to cross-validate various binary classification algorithms used for "class prediction" problems.
This package implements a semi-parametric GEE estimator accounting for missing data with Inverse-probability weighting (IPW) and for imbalance in covariates with augmentation (AUG). The estimator IPW-AUG-GEE is Doubly robust (DR).
This package provides a collection of easy-to-use functions for creating visualizations of compositional data using ggplot2'. Includes support for common plotting techniques in compositional data analysis.
This package provides a daily summary of the Coronavirus (COVID-19) cases by state/province. Data source: Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus <https://systems.jhu.edu/research/public-health/ncov/>.
This package provides a Bayesian method for Phenome-wide association studies (PheWAS) that identifies causal associations between genetic variants and traits, while simultaneously addressing confounding due to linkage disequilibrium. For details see Manipur et al (2024, Nature Communications) <doi:10.1038/s41467-024-49990-8>.
This package provides a set of utility tools to inspect spatial objects, facilitate handling and reporting of topology errors and geometry validity issue with sp objects. Finally, it provides a geometry cleaner that will fix all geometry problems, and eliminate (at least reduce) the likelihood of having issues when doing spatial data processing.
Core Hunter is a tool to sample diverse, representative subsets from large germplasm collections, with minimum redundancy. Such so-called core collections have applications in plant breeding and genetic resource management in general. Core Hunter can construct cores based on genetic marker data, phenotypic traits or precomputed distance matrices, optimizing one of many provided evaluation measures depending on the precise purpose of the core (e.g. high diversity, representativeness, or allelic richness). In addition, multiple measures can be simultaneously optimized as part of a weighted index to bring the different perspectives closer together. The Core Hunter library is implemented in Java 8 as an open source project (see <http://www.corehunter.org>).
Fetches the Cornell Lab of Ornithology Open Tree of Life (clootl) tree in a specified taxonomy. Optionally prune it to a given set of study taxa. Provide a recommended citation list for the studies that informed the extracted tree. Tree generated as described in McTavish et al. (2024) <doi:10.1101/2024.05.20.595017>.
This package provides functions to perform statistical inference of data organized in contingency tables. This package is a companion to the "Statistical Analysis of Contingency Tables" book by Fagerland et al. <ISBN 9781466588172>.
Searches for, accesses, and retrieves Statistics Canada data tables, as well as individual vectors, as tidy data frames. This package enriches the tables with metadata, deals with encoding issues, allows for bilingual English or French language data retrieval, and bundles convenience functions to make it easier to work with retrieved table data. For more efficient data access the package allows for caching data in a local database and database level filtering, data manipulation and summarizing.
Client for CKAN API (<https://ckan.org/>). Includes interface to CKAN APIs for search, list, show for packages, organizations, and resources. In addition, provides an interface to the datastore API.
This package provides datasets containing preformatted maps of Norway at the county, municipality, and ward (Oslo only) level for redistricting in 2024, 2020, 2018, and 2017. Multiple layouts are provided (normal, split, and with an insert for Oslo), allowing the user to rapidly create choropleth maps of Norway without any geolibraries.
This package provides a clustered random forest algorithm for fitting random forests for data of independent clusters, that exhibit within cluster dependence. Details of the method can be found in Young and Buehlmann (2025) <doi:10.48550/arXiv.2503.12634>.
Allow to run Cppcheck (<https://cppcheck.sourceforge.io/>) on C and C++ files with a R command or a RStudio addin. The report appears in the RStudio viewer pane as a formatted HTML file. It is also possible to get this report with a shiny application. Cppcheck can spot many error types and it can also give some recommendations on the code.
Frequentist statistical inference for cluster randomised trials with multiple outcomes that controls the family-wise error rate and provides nominal coverage of confidence sets. A full description of the methods can be found in Watson et al. (2023) <doi:10.1002/sim.9831>.
This package provides a class of methods that combine dimension reduction and clustering of continuous, categorical or mixed-type data (Markos, Iodice D'Enza and van de Velden 2019; <DOI:10.18637/jss.v091.i10>). For continuous data, the package contains implementations of factorial K-means (Vichi and Kiers 2001; <DOI:10.1016/S0167-9473(00)00064-5>) and reduced K-means (De Soete and Carroll 1994; <DOI:10.1007/978-3-642-51175-2_24>); both methods that combine principal component analysis with K-means clustering. For categorical data, the package provides MCA K-means (Hwang, Dillon and Takane 2006; <DOI:10.1007/s11336-004-1173-x>), i-FCB (Iodice D'Enza and Palumbo 2013, <DOI:10.1007/s00180-012-0329-x>) and Cluster Correspondence Analysis (van de Velden, Iodice D'Enza and Palumbo 2017; <DOI:10.1007/s11336-016-9514-0>), which combine multiple correspondence analysis with K-means. For mixed-type data, it provides mixed Reduced K-means and mixed Factorial K-means (van de Velden, Iodice D'Enza and Markos 2019; <DOI:10.1002/wics.1456>), which combine PCA for mixed-type data with K-means.
Various utilities for the complex multivariate Gaussian distribution and complex Gaussian processes.
Light-weight functions for computing descriptive statistics in different circular spaces (e.g., 2pi, 180, or 360 degrees), to handle angle-dependent biases, pad circular data, and more. Specifically aimed for psychologists and neuroscientists analyzing circular data. Basic methods are based on Jammalamadaka and SenGupta (2001) <doi:10.1142/4031>, removal of cardinal biases is based on the approach introduced in van Bergen, Ma, Pratte, & Jehee (2015) <doi:10.1038/nn.4150> and Chetverikov and Jehee (2023) <doi:10.1038/s41467-023-43251-w>.
Clustering multi-subject resting state functional Magnetic Resonance Imaging data. This methods enables the clustering of subjects based on multi-subject resting state functional Magnetic Resonance Imaging data. Objects are clustered based on similarities and differences in cluster-specific estimated components obtained by Independent Component Analysis.
Features tools for exploring congruent phylogenetic birth-death models. It can construct the pulled speciation- and net-diversification rates from a reference model. Given alternative speciation- or extinction rates, it can construct new models that are congruent with the reference model. Functionality is included to sample new rate functions, and to visualize the distribution of one congruence class. See also Louca & Pennell (2020) <doi:10.1038/s41586-020-2176-1>.
This package provides a tool for analyzing conjoint experiments using Bayesian Additive Regression Trees ('BART'), a machine learning method developed by Chipman, George and McCulloch (2010) <doi:10.1214/09-AOAS285>. This tool focuses specifically on estimating, identifying, and visualizing the heterogeneity within marginal component effects, at the observation- and individual-level. It uses a variable importance measure ('VIMP') with delete-d jackknife variance estimation, following Ishwaran and Lu (2019) <doi:10.1002/sim.7803>, to obtain bias-corrected estimates of which variables drive heterogeneity in the predicted individual-level effects.
Numerical integration of cause-specific survival curves to arrive at cause-specific cumulative incidence functions, with three usage modes: 1) Convenient API for parametric survival regression followed by competing-risk analysis, 2) API for CFC, accepting user-specified survival functions in R, and 3) Same as 2, but accepting survival functions in C++. For mathematical details and software tutorial, see Mahani and Sharabiani (2019) <DOI:10.18637/jss.v089.i09>.
Functionality to perform adaptive multi-wave sampling for efficient chart validation. Code allows one to define strata, adaptively sample using several types of confidence bounds for the quantity of interest (Lai's confidence bands, Bayesian credible intervals, normal confidence intervals), and sampling strategies (random sampling, stratified random sampling, Neyman's sampling, see Neyman (1934) <doi:10.2307/2342192> and Neyman (1938) <doi:10.1080/01621459.1938.10503378>).
Autosimilarity curves, standardization of spatial extent, dissimilarity indexes that overweight rare species, phylogenetic and functional (pairwise and multisample) dissimilarity indexes and nestedness for phylogenetic, functional and other diversity metrics. The methods for phylogenetic and functional nestedness is described in Melo, Cianciaruso and Almeida-Neto (2014) <doi:10.1111/2041-210X.12185>. This should be a complement to available packages, particularly vegan'.