Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs requests to the Arctos API to download data. Provides a set of builder classes for performing complex requests, as well as a set of simple functions for automating many common requests and workflows. More information about Arctos can be found in Cicero et al. (2024) <doi:10.1371/journal.pone.0296478> or on their website <https://arctosdb.org/>.
Pair of simple convenience functions to convert a vector of birth dates to age and age distributions. These functions may be helpful when related age and custom age distributions are desired given a vector of birth dates.
Implementation in R of the alpha-shape of a finite set of points in the three-dimensional space. The alpha-shape generalizes the convex hull and allows to recover the shape of non-convex and even non-connected sets in 3D, given a random sample of points taken into it. Besides the computation of the alpha-shape, this package provides users with functions to compute the volume of the alpha-shape, identify the connected components and facilitate the three-dimensional graphical visualization of the estimated set.
This package provides a set of functions for interacting with the DigitalOcean API <https://www.digitalocean.com/>, including creating images, destroying them, rebooting, getting details on regions, and available images.
This package produces several metrics to assess the prediction of ordinal categories based on the estimated probability distribution for each unit of analysis produced by any model returning a matrix with these probabilities.
This package provides methods for high-throughput adaptive immune receptor repertoire sequencing (AIRR-Seq; Rep-Seq) analysis. In particular, immunoglobulin (Ig) sequence lineage reconstruction, lineage topology analysis, diversity profiling, amino acid property analysis and gene usage. Citations: Gupta and Vander Heiden, et al (2017) <doi:10.1093/bioinformatics/btv359>, Stern, Yaari and Vander Heiden, et al (2014) <doi:10.1126/scitranslmed.3008879>.
Designed to help health economic modellers when building and reviewing models. The visualisation functions allow users to more easily review the network of functions in a project, and get lay summaries of them. The asserts included are intended to check for common errors, thereby freeing up time for modellers to focus on tests specific to the individual model in development or review. For more details see Smith and colleagues (2024)<doi:10.12688/wellcomeopenres.23180.1>.
Enables to compute the statistical indices of affluence (richness) with bootstrap errors, and inequality and polarization indices. Moreover, gives the possibility of calculation of affluence line. Some simple errors are fixed and it works with new version of Spatial Statistics packaged.
To address the violation of the assumption of normally distributed variables, researchers frequently employ bootstrapping. Building upon established packages for R (Sigmann et al. (2024) <doi:10.32614/CRAN.package.afex>, Lenth (2024) <doi:10.32614/CRAN.package.emmeans>), we provide bootstrapping functions to approximate a normal distribution of the parameter estimates for between-subject, within-subject, and mixed one-way and two-way ANOVA.
RStudio allows to show and navigate for the outline of a R Markdown file, but not for R Markdown projects with multiple files. For this reason, I have developed several RStudio addins capable of show project outline. Each addin is specialized in showing projects of different types: R Markdown project, bookdown package project and LaTeX project. There is a configuration file that allows you to customize additional searches.
The normal process of creating clinical study slides is that a statistician manually type in the numbers from outputs and a separate statistician to double check the typed in numbers. This process is time consuming, resource intensive, and error prone. Automatic slide generation is a solution to address these issues. It reduces the amount of work and the required time when creating slides, and reduces the risk of errors from manually typing or copying numbers from the output to slides. It also helps users to avoid unnecessary stress when creating large amounts of slide decks in a short time window.
Using of the accelerated line search algorithm for simultaneously diagonalize a set of symmetric positive definite matrices.
Data sets used in Cayuela and De la Cruz (2022, ISBN:978-84-8476-833-3).
Adjusts output of cranlogs package to account for CRAN'-wide daily automated downloads and re-downloads caused by package updates.
Government Analysis Function recommended colours for use in charts on gov.uk to help meet accessibility guidance.
We developed a lightweight machine learning tool for RNA profiling of acute lymphoblastic leukemia (ALL), however, it can be used for any problem where multiple classes need to be identified from multi-dimensional data. The methodology is described in Makinen V-P, Rehn J, Breen J, Yeung D, White DL (2022) Multi-cohort transcriptomic subtyping of B-cell acute lymphoblastic leukemia, International Journal of Molecular Sciences 23:4574, <doi:10.3390/ijms23094574>. The classifier contains optimized mean profiles of the classes (centroids) as observed in the training data, and new samples are matched to these centroids using the shortest Euclidean distance. Centroids derived from a dataset of 1,598 ALL patients are included, but users can train the models with their own data as well. The output includes both numerical and visual presentations of the classification results. Samples with mixed features from multiple classes or atypical values are also identified.
Fast processing of ArcGIS FeatureCollection protocol buffers in R. It is designed to work seamlessly with httr2 and integrates with sf'.
This package implements anomaly detection as binary classification for cross-sectional data. Uses maximum likelihood estimates and normal probability functions to classify observations as anomalous. The method is presented in the following lecture from the Machine Learning course by Andrew Ng: <https://www.coursera.org/learn/machine-learning/lecture/C8IJp/algorithm/>, and is also described in: Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, Jaideep Srivastava (2003) <doi:10.1137/1.9781611972733.3>.
This package provides a tool to obtain activity counts, originally a translation of the python package agcounts <https://github.com/actigraph/agcounts>. This tool allows the processing of data from any accelerometer brand, with a more flexible approach to handle different sampling frequencies.
Getting and parsing data of location geocode/reverse-geocode and administrative regions from AutoNavi Maps'<https://lbs.amap.com/api/webservice/summary> API.
This package provides a tool for generating acronyms and initialisms from arbitrary text input.
Automatic fixed rank kriging for (irregularly located) spatial data using a class of basis functions with multi-resolution features and ordered in terms of their resolutions. The model parameters are estimated by maximum likelihood (ML) and the number of basis functions is determined by Akaike's information criterion (AIC). For spatial data with either one realization or independent replicates, the ML estimates and AIC are efficiently computed using their closed-form expressions when no missing value occurs. Details regarding the basis function construction, parameter estimation, and AIC calculation can be found in Tzeng and Huang (2018) <doi:10.1080/00401706.2017.1345701>. For data with missing values, the ML estimates are obtained using the expectation- maximization algorithm. Apart from the number of basis functions, there are no other tuning parameters, making the method fully automatic. Users can also include a stationary structure in the spatial covariance, which utilizes LatticeKrig package.
Alternative and fast algorithms for the analysis of receiver operating characteristics curves (ROC curves) as described in Thomas et al. (2017) <doi:10.1186/s41512-017-0017-y> and Thomas et al. (2023) <doi:10.1016/j.ajogmf.2023.101110>.
Circadian rhythms are rhythms that oscillate about every 24 h, which has been observed in multiple physiological processes including core body temperature, hormone secretion, heart rate, blood pressure, and many others. Measuring circadian rhythm with wearables is based on a principle that there is increased movement during wake periods and reduced movement during sleep periods, and has been shown to be reliable and valid. This package can be used to extract nonparametric circadian metrics like intradaily variability (IV), interdaily stability (IS), and relative amplitude (RA); and parametric cosinor model and extended cosinor model coefficient. Details can be found in Junrui Di et al (2019) <doi:10.1007/s12561-019-09236-4>.