Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements a Ward-like hierarchical clustering algorithm including soft spatial/geographical constraints.
This package provides authentication for Shiny applications using Amazon Cognito ( <https://aws.amazon.com/es/cognito/>).
Population ratio estimator (calibrated) under two-phase random sampling design has gained enormous popularity in the recent time. This package provides functions for estimation population ratio (calibrated) under two phase sampling design, including the approximate variance of the ratio estimator. The improved ratio estimator can be applicable for both the case, when auxiliary data is available at unit level or aggregate level (eg., mean or total) for first phase sampled. Calibration weight of each unit of the second phase sample was calculated. Single and combined inclusion probabilities were also estimated for both phases under two phase random [simple random sampling without replacement (SRSWOR)] sampling. The improved ratio estimator's percentage coefficient of variation was also determined as a measure of accuracy. This package has been developed based on the theoretical development of Islam et al. (2021) and Ozgul (2020) <doi:10.1080/00949655.2020.1844702>.
Helpful functions for the cleaning and manipulation of surveillance data, especially with regards to the creation and validation of panel data from individual level surveillance data.
The goal of cvsem is to provide functions that allow for comparing Structural Equation Models (SEM) using cross-validation. Users can specify multiple SEMs using lavaan syntax. cvsem computes the Kullback Leibler (KL) Divergence between 1) the model implied covariance matrix estimated from the training data and 2) the sample covariance matrix estimated from the test data described in Cudeck, Robert & Browne (1983) <doi:10.18637/jss.v048.i02>. The KL Divergence is computed for each of the specified SEMs allowing for the models to be compared based on their prediction errors.
Calculates daily climate water balance for irrigation purposes and also calculates the reference evapotranspiration (ET) using three methods, Penman and Monteith (Allen et al. 1998, ISBN:92-5-104219-5); Priestley and Taylor (1972) <doi:10/cr3qwn>; or Hargreaves and Samani (1985) <doi:10.13031/2013.26773>. Users may specify a management allowed depletion (MAD), which is used to suggest when to irrigate. The functionality allows for the use of crop and water stress coefficients as well.
Fits hidden Markov models of discrete character evolution which allow different transition rate classes on different portions of a phylogeny. Beaulieu et al (2013) <doi:10.1093/sysbio/syt034>.
Create Pairwise Comparison Matrices for use in the Analytic Hierarchy Process. The Pairwise Comparison Matrix created will be a logical matrix, which unlike a random comparison matrix, is similar to what a rational decision maker would create on the basis of a preference vector for the alternatives considered.
We implement causal decomposition analysis using methods proposed by Park, Lee, and Qin (2022) and Park, Kang, and Lee (2023), which provide researchers with multiple-mediator imputation, single-mediator imputation, and product-of-coefficients regression approaches to estimate the initial disparity, disparity reduction, and disparity remaining (<doi:10.1177/00491241211067516>; <doi:10.1177/00811750231183711>). We also implement sensitivity analysis for causal decomposition using R-squared values as sensitivity parameters (Park, Kang, Lee, and Ma, 2023 <doi:10.1515/jci-2022-0031>). Finally, we include individualized causal decomposition and sensitivity analyses proposed by Park, Kang, and Lee (2025+) <doi:10.48550/arXiv.2506.19010>.
Automated assessment and selection of weighting factors for accurate quantification using linear calibration curve. In addition, a shiny App is provided, allowing users to analyze their data using an interactive graphical user interface, without any programming requirements.
Reading and writing of files in the most commonly used formats of structural crystallography. It includes functions to work with a variety of statistics used in this field and functions to perform basic crystallographic computing. References: D. G. Waterman, J. Foadi, G. Evans (2011) <doi:10.1107/S0108767311084303>.
Load Current Population Survey (CPS) microdata into R using the Census Bureau Data API (<https://www.census.gov/data/developers/data-sets.html>), including basic monthly CPS and CPS ASEC microdata.
The design of this package allows us to run different clustering packages and compare the results between them, to determine which algorithm behaves best from the data provided. See Martos, L.A.P., Garcà a-Vico, à .M., González, P. et al.(2023) <doi:10.1007/s13748-022-00294-2> "Clustering: an R library to facilitate the analysis and comparison of cluster algorithms.", Martos, L.A.P., Garcà a-Vico, à .M., González, P. et al. "A Multiclustering Evolutionary Hyperrectangle-Based Algorithm" <doi:10.1007/s44196-023-00341-3> and L.A.P., Garcà a-Vico, à .M., González, P. et al. "An Evolutionary Fuzzy System for Multiclustering in Data Streaming" <doi:10.1016/j.procs.2023.12.058>.
Duplicated music data (pre-processed and formatted) for entity resolution. The total size of the data set is 9763. There are respective gold standard records that are labeled and can be considered as a unique identifier.
Integrative context-dependent clustering for heterogeneous biomedical datasets. Identifies local clustering structures in related datasets, and a global clusters that exist across the datasets.
Modeling periodic mortality (or other time-to event) processes from right-censored data. Given observations of a process with a known period (e.g. 365 days, 24 hours), functions determine the number, intensity, timing, and duration of peaks of periods of elevated hazard within a period. The underlying model is a mixed wrapped Cauchy function fitted using maximum likelihoods (details in Gurarie et al. (2020) <doi:10.1111/2041-210X.13305>). The development of these tools was motivated by the strongly seasonal mortality patterns observed in many wild animal populations. Thus, the respective periods of higher mortality can be identified as "mortality seasons".
Cure dependent censoring regression models for long-term survival multivariate data. These models are based on extensions of the frailty models, capable to accommodating the cure fraction and the dependence between failure and censoring times, with Weibull and piecewise exponential marginal distributions. Theoretical details regarding the models implemented in the package can be found in Schneider et al. (2022) <doi:10.1007/s10651-022-00549-0>.
Fits constrained groupwise additive index models and provides functions for inference and interpretation of these models. The method is described in Masselot, Chebana, Campagna, Lavigne, Ouarda, Gosselin (2022) "Constrained groupwise additive index models" <doi:10.1093/biostatistics/kxac023>.
The Certifiably Optimal RulE ListS (Corels) learner by Angelino et al described in <doi:10.48550/arXiv.1704.01701> provides interpretable decision rules with an optimality guarantee, and is made available to R with this package. See the file AUTHORS for a list of copyright holders and contributors.
Estimation of crop water demand can be processed via this package. As example, the data from TerraClimate dataset (<https://www.climatologylab.org/terraclimate.html>) calibrated with automatic weather stations of National Meteorological Institute of Brazil is available in a coarse spatial resolution to do the crop water demand. However, the user have also the option to download the variables directly from TerraClimate repository with the download.terraclimate function and access the original TerraClimate products. If the user believes that is necessary calibrate the variables, there is another function to do it. Lastly, the estimation of the crop water demand present in this package can be run for all the Brazilian territory with TerraClimate dataset.
Cluster Evolution Analytics allows us to use exploratory what if questions in the sense that the present information of an object is plugged-in a dataset in a previous time frame so that we can explore its evolution (and of its neighbors) to the present. See the URL for the papers associated with this package, as for instance, Morales-Oñate and Morales-Oñate (2024) <doi:10.1016/j.softx.2024.101921>.
Package to assess the calibration of probabilistic classifiers using confidence bands for monotonic functions. Besides testing the classical goodness-of-fit null hypothesis of perfect calibration, the confidence bands calculated within that package facilitate inverted goodness-of-fit tests whose rejection allows for a sought-after conclusion of a sufficiently well-calibrated model. The package creates flexible graphical tools to perform these tests. For construction details see also Dimitriadis, Dümbgen, Henzi, Puke, Ziegel (2022) <arXiv:2203.04065>.
This package contains 3 maps. 1) US States 2) US Counties 3) Countries of the world.
The main function calculates confidence intervals (CI) for Mixed Models, utilizing both classical estimators from the lmer() function in the lme4 package and robust estimators from the rlmer() function in the robustlmm package, as well as the varComprob() function in the robustvarComp package. Three methods are available: the classical Wald method, the wild bootstrap, and the parametric bootstrap. Bootstrap methods offer flexibility in obtaining lower and upper bounds through percentile or BCa methods. More details are given in Mason, F., Cantoni, E., & Ghisletta, P. (2021) <doi:10.5964/meth.6607> and Mason, F., Cantoni, E., & Ghisletta, P. (2024) <doi:10.1037/met0000643>.