Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Domain mean estimation with monotonicity or block monotone constraints. See Xu X, Meyer MC and Opsomer JD (2021)<doi:10.1016/j.jspi.2021.02.004> for more details.
This package provides a standard test is observed on all specimens. We treat the second test (or sampled test) as being conducted on only a stratified sample of specimens. Verification Bias is this situation when the specimens for doing the second (sampled) test is not under investigator control. We treat the total sample as stratified two-phase sampling and use inverse probability weighting. We estimate diagnostic accuracy (category-specific classification probabilities; for binary tests reduces to specificity and sensitivity, and also predictive values) and agreement statistics (percent agreement, percent agreement by category, Kappa (unweighted), Kappa (quadratic weighted) and symmetry tests (reduces to McNemar's test for binary tests)). See: Katki HA, Li Y, Edelstein DW, Castle PE. Estimating the agreement and diagnostic accuracy of two diagnostic tests when one test is conducted on only a subsample of specimens. Stat Med. 2012 Feb 28; 31(5) <doi:10.1002/sim.4422>.
This package provides six variants of two-way correspondence analysis (ca): simple ca, singly ordered ca, doubly ordered ca, non symmetrical ca, singly ordered non symmetrical ca, and doubly ordered non symmetrical ca.
Built upon popular R packages such as ggstatsplot and ARTool', this collection offers a wide array of tools for simplifying reproducible analyses, generating high-quality visualizations, and producing APA'-compliant outputs. The primary goal of this package is to significantly reduce repetitive coding efforts, allowing you to focus on interpreting results. Whether you're dealing with ANOVA assumptions, reporting effect sizes, or creating publication-ready visualizations, this package makes these tasks easier.
This package provides a set of utilities for matching products in different classification codes used in international trade research. It supports concordance between the Harmonized System (HS0, HS1, HS2, HS3, HS4, HS5, HS combined), the Standard International Trade Classification (SITC1, SITC2, SITC3, SITC4), the North American Industry Classification System (NAICS combined), as well as the Broad Economic Categories (BEC), the International Standard of Industrial Classification (ISIC), and the Standard Industrial Classification (SIC). It also provides code nomenclature/descriptions look-up, Rauch classification look-up (via concordance to SITC2), and trade elasticity look-up (via concordance to HS0 or SITC3 codes).
Implementation of the CNAIM standard in R. Contains a series of algorithms which determine the probability of failure, consequences of failure and monetary risk associated with electricity distribution companies assets such as transformers and cables. Results are visualized in an easy-to-understand risk matrix.
Contribution table for credit assignment based on ggplot2'. This can improve the author contribution information in academic journals and personal CV.
Simple and seamless access to a variety of StatCan shapefiles for mapping Canadian provinces, regions, forward sortation areas, census divisions, and subdivisions using the popular ggplot2 package.
Computing, comparing, and demonstrating top informative centrality measures within a network. "CINNA: an R/CRAN package to decipher Central Informative Nodes in Network Analysis" provides a comprehensive overview of the package functionality Ashtiani et al. (2018) <doi:10.1093/bioinformatics/bty819>.
This package provides a tool for transforming coordinates in a color space to common color names using data from the Royal Horticultural Society and the International Union for the Protection of New Varieties of Plants.
This package provides tools for advanced analysis of continuous glucose monitoring (CGM) time-series, implementing GRID (Glucose Rate Increase Detector) and GRID-based algorithms for postprandial peak detection, and detection of hypoglycemic and hyperglycemic episodes (Levels 1/2/Extended) aligned with international consensus CGM metrics. Core algorithms are implemented in optimized C++ using Rcpp to provide accurate and fast analysis on large datasets.
Create cumulative odds ratio plot to visually inspect the proportional odds assumption from the proportional odds model.
This package provides a Bayesian meta-analysis method for studying cross-phenotype genetic associations. It uses summary-level data across multiple phenotypes to simultaneously measure the evidence of aggregate-level pleiotropic association and estimate an optimal subset of traits associated with the risk locus. CPBayes is based on a spike and slab prior. The methodology is available from: A Majumdar, T Haldar, S Bhattacharya, JS Witte (2018) <doi:10.1371/journal.pgen.1007139>.
Routines for solving convex optimization problems with cone constraints by means of interior-point methods. The implemented algorithms are partially ported from CVXOPT, a Python module for convex optimization (see <https://cvxopt.org> for more information).
Functionality for segmenting individual trees from a forest stand scanned with a close-range (e.g., terrestrial or mobile) laser scanner. The complete workflow from a raw point cloud to a complete tabular forest inventory is provided. The package contains several algorithms for detecting tree bases and a graph-based algorithm to attach all remaining points to these tree bases. It builds heavily on the lidR package. A description of the segmentation algorithm can be found in Larysch et al. (2025) <doi:10.1007/s10342-025-01796-z>.
Routines for the graphical representation of correlation matrices by means of correlograms, MDS maps and biplots obtained by PCA, PFA or WALS (weighted alternating least squares); See Graffelman & De Leeuw (2023) <doi: 10.1080/00031305.2023.2186952>.
Utility functions to facilitate the import, the reporting and analysis of clinical data. Example datasets in SDTM and ADaM format, containing a subset of patients/domains from the CDISC Pilot 01 study are also available as R datasets to demonstrate the package functionalities.
This package provides a toolkit to perform cross-species analysis based on scRNA-seq data. This package contains 5 main features. (1) identify Markers in each cluster. (2) Cell type annotation (3) identify conserved markers. (4) identify conserved cell types. (5) identify conserved modules of regulatory networks.
This package provides a suite of routines for Clifford algebras, using the Map class of the Standard Template Library. Canonical reference: Hestenes (1987, ISBN 90-277-1673-0, "Clifford algebra to geometric calculus"). Special cases including Lorentz transforms, quaternion multiplication, and Grassmann algebra, are discussed. Vignettes presenting conformal geometric algebra, quaternions and split quaternions, dual numbers, and Lorentz transforms are included. The package follows disordR discipline.
This package provides methods for powering cluster-randomized trials with two continuous co-primary outcomes using five key design techniques. Includes functions for calculating required sample size and statistical power. For more details on methodology, see Owen et al. (2025) <doi:10.1002/sim.70015>, Yang et al. (2022) <doi:10.1111/biom.13692>, Pocock et al. (1987) <doi:10.2307/2531989>, Vickerstaff et al. (2019) <doi:10.1186/s12874-019-0754-4>, and Li et al. (2020) <doi:10.1111/biom.13212>.
Finds a low-dimensional embedding of high-dimensional data, conditioning on available manifold information. The current version supports conditional MDS (based on either conditional SMACOF in Bui (2021) <arXiv:2111.13646> or closed-form solution in Bui (2022) <doi:10.1016/j.patrec.2022.11.007>) and conditional ISOMAP in Bui (2021) <arXiv:2111.13646>.
Cronbach's alpha and McDonald's omega are widely used reliability or internal consistency measures in social, behavioral and education sciences. Alpha is reported in nearly every study that involves measuring a construct through multiple test items. The package coefficientalpha calculates coefficient alpha and coefficient omega with missing data and non-normal data. Robust standard errors and confidence intervals are also provided. A test is also available to test the tau-equivalent and homogeneous assumptions. Since Version 0.5, the bootstrap confidence intervals were added.
Provide standard tables, listings, and graphs (TLGs) libraries used in clinical trials. This package implements a structure to reformat the data with dunlin', create reporting tables using rtables and tern with standardized input arguments to enable quick generation of standard outputs. In addition, it also provides comprehensive data checks and script generation functionality.
Call the DeOldify <https://github.com/jantic/DeOldify> image colorization API on DeepAI'<https://deepai.org/machine-learning-model/colorizer> to colorize black and white images.