_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-cane 0.1.1
Propagated dependencies: r-emmeans@2.0.0 r-dplyr@1.1.4 r-agricolae@1.3-7
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CANE
Licenses: GPL 3
Build system: r
Synopsis: Comprehensive Groups of Experiments Analysis for Numerous Environments
Description:

In many cases, experiments must be repeated across multiple seasons or locations to ensure applicability of findings. A single experiment conducted in one location and season may yield limited conclusions, as results can vary under different environmental conditions. In agricultural research, treatment à location and treatment à season interactions play a crucial role. Analyzing a series of experiments across diverse conditions allows for more generalized and reliable recommendations. The CANE package facilitates the pooled analysis of experiments conducted over multiple years, seasons, or locations. It is designed to assess treatment interactions with environmental factors (such as location and season) using various experimental designs. The package supports pooled analysis of variance (ANOVA) for the following designs: (1) PooledCRD()': completely randomized design; (2) PooledRBD()': randomized block design; (3) PooledLSD()': Latin square design; (4) PooledSPD()': split plot design; and (5) PooledStPD()': strip plot design. Each function provides the following outputs: (i) Individual ANOVA tables based on independent analysis for each location or year; (ii) Testing of homogeneity of error variances among distinct locations using Bartlettâ s Chi-Square test; (iii) If Bartlettâ s test is significant, Aitkenâ s transformation, defined as the ratio of the response to the square root of the error mean square, is applied to the response variable; otherwise, the data is used as is; (iv) Combined analysis to obtain a pooled ANOVA table; (v) Multiple comparison tests, including Tukey's honestly significant difference (Tukey's HSD) test, Duncanâ s multiple range test (DMRT), and the least significant difference (LSD) test, for treatment comparisons. The statistical theory and steps of analysis of these designs are available in Dean et al. (2017)<doi:10.1007/978-3-319-52250-0> and Ruà z et al. (2024)<doi:10.1007/978-3-031-65575-3>. By broadening the scope of experimental conclusions, CANE enables researchers to derive robust, widely applicable recommendations. This package is particularly valuable in agricultural research, where accounting for treatment à location and treatment à season interactions is essential for ensuring the validity of findings across multiple settings.

r-csmpv 1.0.5
Propagated dependencies: r-xgboost@1.7.11.1 r-survminer@0.5.1 r-survival@3.8-3 r-scales@1.4.0 r-rms@8.1-0 r-matrix@1.7-4 r-hmisc@5.2-4 r-glmnet@4.1-10 r-ggpubr@0.6.2 r-ggplot2@4.0.1 r-forestmodel@0.6.2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=csmpv
Licenses: Expat
Build system: r
Synopsis: Biomarker Confirmation, Selection, Modelling, Prediction, and Validation
Description:

There are diverse purposes such as biomarker confirmation, novel biomarker discovery, constructing predictive models, model-based prediction, and validation. It handles binary, continuous, and time-to-event outcomes at the sample or patient level. - Biomarker confirmation utilizes established functions like glm() from stats', coxph() from survival', surv_fit(), and ggsurvplot() from survminer'. - Biomarker discovery and variable selection are facilitated by three LASSO-related functions LASSO2(), LASSO_plus(), and LASSO2plus(), leveraging the glmnet R package with additional steps. - Eight versatile modeling functions are offered, each designed for predictive models across various outcomes and data types. 1) LASSO2(), LASSO_plus(), LASSO2plus(), and LASSO2_reg() perform variable selection using LASSO methods and construct predictive models based on selected variables. 2) XGBtraining() employs XGBoost for model building and is the only function not involving variable selection. 3) Functions like LASSO2_XGBtraining(), LASSOplus_XGBtraining(), and LASSO2plus_XGBtraining() combine LASSO-related variable selection with XGBoost for model construction. - All models support prediction and validation, requiring a testing dataset comparable to the training dataset. Additionally, the package introduces XGpred() for risk prediction based on survival data, with the XGpred_predict() function available for predicting risk groups in new datasets. The methodology is based on our new algorithms and various references: - Hastie et al. (1992, ISBN 0 534 16765-9), - Therneau et al. (2000, ISBN 0-387-98784-3), - Kassambara et al. (2021) <https://CRAN.R-project.org/package=survminer>, - Friedman et al. (2010) <doi:10.18637/jss.v033.i01>, - Simon et al. (2011) <doi:10.18637/jss.v039.i05>, - Harrell (2023) <https://CRAN.R-project.org/package=rms>, - Harrell (2023) <https://CRAN.R-project.org/package=Hmisc>, - Chen and Guestrin (2016) <doi:10.48550/arXiv.1603.02754>, - Aoki et al. (2023) <doi:10.1200/JCO.23.01115>.

r-context 3.0.0
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-text2vec@0.6.4 r-stringr@1.6.0 r-reshape2@1.4.5 r-quanteda@4.3.1 r-matrix@1.7-4 r-ggplot2@4.0.1 r-foreach@1.5.2 r-fastdummies@1.7.5 r-estimatr@1.0.6 r-dplyr@1.1.4 r-broom@1.0.10
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/prodriguezsosa/conText
Licenses: GPL 3
Build system: r
Synopsis: 'a la Carte' on Text (ConText) Embedding Regression
Description:

This package provides a fast, flexible and transparent framework to estimate context-specific word and short document embeddings using the a la carte embeddings approach developed by Khodak et al. (2018) <doi:10.48550/arXiv.1805.05388> and evaluate hypotheses about covariate effects on embeddings using the regression framework developed by Rodriguez et al. (2021)<doi:10.1017/S0003055422001228>. New version of the package applies a new estimator to measure the distance between word embeddings as described in Green et al. (2025) <doi:10.1017/pan.2024.22>.

r-circoutlier 3.2.3
Propagated dependencies: r-circular@0.5-2 r-circstats@0.2-7
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CircOutlier
Licenses: GPL 2+
Build system: r
Synopsis: Detection of Outliers in Circular-Circular Regression
Description:

Detection of outliers in circular-circular regression models, modifying its and estimating of models parameters.

r-clinpubr 1.2.0
Propagated dependencies: r-tidyr@1.3.1 r-survminer@0.5.1 r-survival@3.8-3 r-stringr@1.6.0 r-stringi@1.8.7 r-rms@8.1-0 r-rlang@1.1.6 r-hmisc@5.2-4 r-ggplot2@4.0.1 r-forestploter@1.1.3 r-fbasics@4041.97 r-dplyr@1.1.4 r-desctools@0.99.60 r-car@3.1-3 r-broom@1.0.10
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/yotasama/clinpubr
Licenses: Expat
Build system: r
Synopsis: Clinical Publication
Description:

Accelerate the process from clinical data to medical publication, including clinical data cleaning, significant result screening, and the generation of publish-ready tables and figures.

r-conductor 0.1.1
Propagated dependencies: r-shiny@1.11.1 r-r6@2.6.1 r-htmltools@0.5.8.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/etiennebacher/conductor
Licenses: Expat
Build system: r
Synopsis: Create Tours in 'Shiny' Apps Using 'Shepherd.js'
Description:

Enable the use of Shepherd.js to create tours in Shiny applications.

r-circmle 0.3.0
Propagated dependencies: r-energy@1.7-12 r-circular@0.5-2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://www.r-project.org
Licenses: GPL 2+
Build system: r
Synopsis: Maximum Likelihood Analysis of Circular Data
Description:

This package provides a series of wrapper functions to implement the 10 maximum likelihood models of animal orientation described by Schnute and Groot (1992) <DOI:10.1016/S0003-3472(05)80068-5>. The functions also include the ability to use different optimizer methods and calculate various model selection metrics (i.e., AIC, AICc, BIC). The ability to perform variants of the Hermans-Rasson test and Pycke test is also included as described in Landler et al. (2019) <DOI:10.1186/s12898-019-0246-8>. The latest version also includes a new method to calculate circular-circular and circular-linear distance correlations.

r-codalomic 0.1.1
Propagated dependencies: r-zcompositions@1.5.0-5 r-xtable@1.8-4 r-reshape2@1.4.5 r-r2jags@0.8-9 r-mass@7.3-65 r-ggplot2@4.0.1 r-ggbiplot@0.6.2 r-compositions@2.0-9 r-broom@1.0.10
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CoDaLoMic
Licenses: GPL 3
Build system: r
Synopsis: Compositional Models to Longitudinal Microbiome Data
Description:

Implementation of models to analyse compositional microbiome time series taking into account the interaction between groups of bacteria. The models implemented are described in Creus-Martà et al (2018, ISBN:978-84-09-07541-6), Creus-Martà et al (2021) <doi:10.1155/2021/9951817> and Creus-Martà et al (2022) <doi:10.1155/2022/4907527>.

r-cmls 1.1
Propagated dependencies: r-quadprog@1.5-8
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CMLS
Licenses: GPL 2+
Build system: r
Synopsis: Constrained Multivariate Least Squares
Description:

Solves multivariate least squares (MLS) problems subject to constraints on the coefficients, e.g., non-negativity, orthogonality, equality, inequality, monotonicity, unimodality, smoothness, etc. Includes flexible functions for solving MLS problems subject to user-specified equality and/or inequality constraints, as well as a wrapper function that implements 24 common constraint options. Also does k-fold or generalized cross-validation to tune constraint options for MLS problems. See ten Berge (1993, ISBN:9789066950832) for an overview of MLS problems, and see Goldfarb and Idnani (1983) <doi:10.1007/BF02591962> for a discussion of the underlying quadratic programming algorithm.

r-coala 0.7.2
Propagated dependencies: r-scrm@1.7.5 r-rehh@3.2.3 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-r6@2.6.1 r-digest@0.6.39 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/statgenlmu/coala
Licenses: Expat
Build system: r
Synopsis: Framework for Coalescent Simulation
Description:

Coalescent simulators can rapidly simulate biological sequences evolving according to a given model of evolution. You can use this package to specify such models, to conduct the simulations and to calculate additional statistics from the results (Staab, Metzler, 2016 <doi:10.1093/bioinformatics/btw098>). It relies on existing simulators for doing the simulation, and currently supports the programs ms', msms and scrm'. It also supports finite-sites mutation models by combining the simulators with the program seq-gen'. Coala provides functions for calculating certain summary statistics, which can also be applied to actual biological data. One possibility to import data is through the PopGenome package (<https://github.com/pievos101/PopGenome>).

r-corazon 0.1.0
Propagated dependencies: r-htmltools@0.5.8.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/feddelegrand7/corazon
Licenses: Expat
Build system: r
Synopsis: Apply 'colorffy' Color Gradients Within 'shiny' Elements
Description:

Allows the user to apply nice color gradients to shiny elements. The gradients are extracted from the colorffy website. See <https://www.colorffy.com/gradients/catalog>.

r-crossover 0.1-22
Dependencies: openjdk@25
Propagated dependencies: r-xtable@1.8-4 r-rjava@1.0-11 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-multcomp@1.4-29 r-matrix@1.7-4 r-mass@7.3-65 r-javagd@0.6-6 r-ggplot2@4.0.1 r-digest@0.6.39 r-crossdes@1.1-2 r-commonjavajars@1.1-0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/kornl/Crossover/wiki
Licenses: GPL 2
Build system: r
Synopsis: Analysis and Search of Crossover Designs
Description:

Generate and analyse crossover designs from combinatorial or search algorithms as well as from literature and a GUI to access them.

r-commonmean-copula 1.0.4
Propagated dependencies: r-pracma@2.4.6 r-mvtnorm@1.3-3
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CommonMean.Copula
Licenses: GPL 2
Build system: r
Synopsis: Common Mean Vector under Copula Models
Description:

Estimate bivariate common mean vector under copula models with known correlation. In the current version, available copulas are the Clayton, Gumbel, Frank, Farlie-Gumbel-Morgenstern (FGM), and normal copulas. See Shih et al. (2019) <doi:10.1080/02331888.2019.1581782> and Shih et al. (2021) <under review> for details under the FGM and general copulas, respectively.

r-citools 0.6.1
Propagated dependencies: r-survival@3.8-3 r-mass@7.3-65 r-lme4@1.1-37 r-dplyr@1.1.4 r-boot@1.3-32 r-arm@1.14-4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/jthaman/ciTools
Licenses: GPL 3+
Build system: r
Synopsis: Confidence or Prediction Intervals, Quantiles, and Probabilities for Statistical Models
Description:

This package provides functions to append confidence intervals, prediction intervals, and other quantities of interest to data frames. All appended quantities are for the response variable, after conditioning on the model and covariates. This package has a data frame first syntax that allows for easy piping. Currently supported models include (log-) linear, (log-) linear mixed, generalized linear models, generalized linear mixed models, and accelerated failure time models.

r-cost 0.1.0
Propagated dependencies: r-mvtnorm@1.3-3 r-copula@1.1-6
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=COST
Licenses: GPL 2+ GPL 3+
Build system: r
Synopsis: Copula-Based Semiparametric Models for Spatio-Temporal Data
Description:

Parameter estimation, one-step ahead forecast and new location prediction methods for spatio-temporal data.

r-clusevol 1.0.1
Propagated dependencies: r-viridis@0.6.5 r-plotly@4.11.0 r-ggplot2@4.0.1 r-fpc@2.2-13 r-dplyr@1.1.4 r-clustersim@0.51-6 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/vmoprojs/clusEvol
Licenses: GPL 3+
Build system: r
Synopsis: Procedure for Cluster Evolution Analytics
Description:

Cluster Evolution Analytics allows us to use exploratory what if questions in the sense that the present information of an object is plugged-in a dataset in a previous time frame so that we can explore its evolution (and of its neighbors) to the present. See the URL for the papers associated with this package, as for instance, Morales-Oñate and Morales-Oñate (2024) <doi:10.1016/j.softx.2024.101921>.

r-cardiocurver 1.0.0
Propagated dependencies: r-signal@1.8-1 r-gridextra@2.3 r-ggplot2@4.0.1 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/matcasti/CardioCurveR
Licenses: Expat
Build system: r
Synopsis: Nonlinear Modeling of R-R Interval Dynamics
Description:

Automated and robust framework for analyzing R-R interval (RRi) signals using advanced nonlinear modeling and preprocessing techniques. The package implements a dual-logistic model to capture the rapid drop and subsequent recovery of RRi during exercise, as described by Castillo-Aguilar et al. (2025) <doi:10.1038/s41598-025-93654-6>. In addition, CardioCurveR includes tools for filtering RRi signals using zero-phase Butterworth low-pass filtering and for cleaning ectopic beats via adaptive outlier replacement using local regression and robust statistics. These integrated methods preserve the dynamic features of RRi signals and facilitate accurate cardiovascular monitoring and clinical research.

r-ciaawconsensus 1.3
Propagated dependencies: r-stringr@1.6.0 r-numderiv@2016.8-1.1 r-mvtnorm@1.3-3 r-matrix@1.7-4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CIAAWconsensus
Licenses: FSDG-compatible
Build system: r
Synopsis: Isotope Ratio Meta-Analysis
Description:

Calculation of consensus values for atomic weights, isotope amount ratios, and isotopic abundances with the associated uncertainties using multivariate meta-regression approach for consensus building.

r-csclone 1.0
Propagated dependencies: r-moments@0.14.1 r-mcclust@1.0.1 r-lpsolve@5.6.23 r-dnacopy@1.84.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CSclone
Licenses: GPL 2+
Build system: r
Synopsis: Bayesian Nonparametric Modeling in R
Description:

Germline and somatic locus data which contain the total read depth and B allele read depth using Bayesian model (Dirichlet Process) to cluster. Meanwhile, the cluster model can deal with the SNVs mutation and the CNAs mutation.

r-climatestability 0.1.4
Propagated dependencies: r-terra@1.8-86
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/hannahlowens/climateStability
Licenses: GPL 3
Build system: r
Synopsis: Estimating Climate Stability from Climate Model Data
Description:

Climate stability measures are not formalized in the literature and tools for generating stability metrics from existing data are nascent. This package provides tools for calculating climate stability from raster data encapsulating climate change as a series of time slices. The methods follow Owens and Guralnick <doi:10.17161/bi.v14i0.9786> Biodiversity Informatics.

r-ctmm 1.3.0
Propagated dependencies: r-terra@1.8-86 r-statmod@1.5.1 r-sp@2.2-0 r-shape@1.4.6.1 r-sf@1.0-23 r-raster@3.6-32 r-pracma@2.4.6 r-pbivnorm@0.6.0 r-parsedate@1.3.2 r-numderiv@2016.8-1.1 r-mass@7.3-65 r-manipulate@1.0.1 r-gsl@2.1-9 r-gmedian@1.2.7 r-fasttime@1.1-0 r-expm@1.0-0 r-digest@0.6.39 r-data-table@1.17.8 r-bessel@0.7-0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/ctmm-initiative/ctmm
Licenses: GPL 3
Build system: r
Synopsis: Continuous-Time Movement Modeling
Description:

This package provides functions for identifying, fitting, and applying continuous-space, continuous-time stochastic-process movement models to animal tracking data. The package is described in Calabrese et al (2016) <doi:10.1111/2041-210X.12559>, with models and methods based on those introduced and detailed in Fleming & Calabrese et al (2014) <doi:10.1086/675504>, Fleming et al (2014) <doi:10.1111/2041-210X.12176>, Fleming et al (2015) <doi:10.1103/PhysRevE.91.032107>, Fleming et al (2015) <doi:10.1890/14-2010.1>, Fleming et al (2016) <doi:10.1890/15-1607>, Péron & Fleming et al (2016) <doi:10.1186/s40462-016-0084-7>, Fleming & Calabrese (2017) <doi:10.1111/2041-210X.12673>, Péron et al (2017) <doi:10.1002/ecm.1260>, Fleming et al (2017) <doi:10.1016/j.ecoinf.2017.04.008>, Fleming et al (2018) <doi:10.1002/eap.1704>, Winner & Noonan et al (2018) <doi:10.1111/2041-210X.13027>, Fleming et al (2019) <doi:10.1111/2041-210X.13270>, Noonan & Fleming et al (2019) <doi:10.1186/s40462-019-0177-1>, Fleming et al (2020) <doi:10.1101/2020.06.12.130195>, Noonan et al (2021) <doi:10.1111/2041-210X.13597>, Fleming et al (2022) <doi:10.1111/2041-210X.13815>, Silva et al (2022) <doi:10.1111/2041-210X.13786>, Alston & Fleming et al (2023) <doi:10.1111/2041-210X.14025>.

r-clusterwebapp 0.1.3
Propagated dependencies: r-tidyr@1.3.1 r-shinythemes@1.2.0 r-shinycssloaders@1.1.0 r-shiny@1.11.1 r-rtsne@0.17 r-mlbench@2.1-6 r-mclust@6.1.2 r-magrittr@2.0.4 r-kernlab@0.9-33 r-ggplot2@4.0.1 r-factoextra@1.0.7 r-dt@0.34.0 r-dplyr@1.1.4 r-dbscan@1.2.3 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=clusterWebApp
Licenses: Expat
Build system: r
Synopsis: Universal Clustering Analysis Platform
Description:

An interactive platform for clustering analysis and teaching based on the shiny web application framework. Supports multiple popular clustering algorithms including k-means, hierarchical clustering, DBSCAN (Density-Based Spatial Clustering of Applications with Noise), PAM (Partitioning Around Medoids), GMM (Gaussian Mixture Model), and spectral clustering. Users can upload datasets or use built-in ones, visualize clustering results using dimensionality reduction methods such as Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE), evaluate clustering quality via silhouette plots, and explore method-specific visualizations and guides. For details on implemented methods, see: Reynolds (2009, ISBN:9781598296975) for GMM; Luxburg (2007) <doi:10.1007/s11222-007-9033-z> for spectral clustering.

r-cdata 1.2.1
Propagated dependencies: r-wrapr@2.1.0 r-rquery@1.4.99 r-rqdatatable@1.3.3
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/WinVector/cdata/
Licenses: GPL 2 GPL 3
Build system: r
Synopsis: Fluid Data Transformations
Description:

Supplies higher-order coordinatized data specification and fluid transform operators that include pivot and anti-pivot as special cases. The methodology is describe in Zumel', 2018, "Fluid data reshaping with cdata'", <https://winvector.github.io/FluidData/FluidDataReshapingWithCdata.html> , <DOI:10.5281/zenodo.1173299> . This package introduces the idea of explicit control table specification of data transforms. Works on in-memory data or on remote data using rquery and SQL database interfaces.

r-catdataanalysis 0.1-5
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/cjgeyer/CatDataAnalysis
Licenses: GPL 2+
Build system: r
Synopsis: Datasets for Categorical Data Analysis by Agresti
Description:

Datasets used in the book "Categorical Data Analysis" by Agresti (2012, ISBN:978-0-470-46363-5) but not printed in the book. Datasets and help pages were automatically produced from the source <https://users.stat.ufl.edu/~aa/cda/data.html> by the R script foo.R, which can be found in the GitHub repository.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283