_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-cmapviz 0.1.0
Propagated dependencies: r-stringr@1.6.0 r-scales@1.4.0 r-reshape2@1.4.5 r-readxl@1.4.5 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CMapViz
Licenses: GPL 3
Build system: r
Synopsis: Representation Tool For Output Of Connectivity Map (CMap) Analysis
Description:

Automatically displays graphical visualization for exported data table (permutated results) from Connectivity Map (CMap) (2006) <doi:10.1126/science.1132939>. It allows the representation of the statistics (p-value and enrichment) according to each cell lines in the form of a bubble plot.

r-convergenceconcepts 1.2.3
Propagated dependencies: r-tkrplot@0.0-30 r-lattice@0.22-7
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=ConvergenceConcepts
Licenses: GPL 2+
Build system: r
Synopsis: Seeing Convergence Concepts in Action
Description:

This is a pedagogical package, designed to help students understanding convergence of random variables. It provides a way to investigate interactively various modes of convergence (in probability, almost surely, in law and in mean) of a sequence of i.i.d. random variables. Visualisation of simulated sample paths is possible through interactive plots. The approach is illustrated by examples and exercises through the function investigate', as described in Lafaye de Micheaux and Liquet (2009) <doi:10.1198/tas.2009.0032>. The user can study his/her own sequences of random variables.

r-configparser 1.0.0
Propagated dependencies: r-r6@2.6.1 r-ini@0.3.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/hhoeflin/ConfigParser
Licenses: GPL 3
Build system: r
Synopsis: Package to Parse an INI File, Including Variable Interpolation
Description:

Enhances the ini package by adding the ability to interpolate variables. The INI configuration file is read into an R6 ConfigParser object (loosely inspired by Pythons ConfigParser module) and the keys can be read, where %(....)s instances are interpolated by other included options or outside variables.

r-copularemada 1.7.5
Propagated dependencies: r-tensor@1.5.1 r-statmod@1.5.1 r-mc2d@0.2.1 r-matlab@1.0.4.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CopulaREMADA
Licenses: GPL 2+
Build system: r
Synopsis: Copula Mixed Models for Multivariate Meta-Analysis of Diagnostic Test Accuracy Studies
Description:

The bivariate copula mixed model for meta-analysis of diagnostic test accuracy studies in Nikoloulopoulos (2015) <doi:10.1002/sim.6595> and Nikoloulopoulos (2018) <doi:10.1007/s10182-017-0299-y>. The vine copula mixed model for meta-analysis of diagnostic test accuracy studies accounting for disease prevalence in Nikoloulopoulos (2017) <doi:10.1177/0962280215596769> and also accounting for non-evaluable subjects in Nikoloulopoulos (2020) <doi:10.1515/ijb-2019-0107>. The hybrid vine copula mixed model for meta-analysis of diagnostic test accuracy case-control and cohort studies in Nikoloulopoulos (2018) <doi:10.1177/0962280216682376>. The D-vine copula mixed model for meta-analysis and comparison of two diagnostic tests in Nikoloulopoulos (2019) <doi:10.1177/0962280218796685>. The multinomial quadrivariate D-vine copula mixed model for meta-analysis of diagnostic tests with non-evaluable subjects in Nikoloulopoulos (2020) <doi:10.1177/0962280220913898>. The one-factor copula mixed model for joint meta-analysis of multiple diagnostic tests in Nikoloulopoulos (2022) <doi:10.1111/rssa.12838>. The multinomial six-variate 1-truncated D-vine copula mixed model for meta-analysis of two diagnostic tests accounting for within and between studies dependence in Nikoloulopoulos (2024) <doi:10.1177/09622802241269645>. The 1-truncated D-vine copula mixed models for meta-analysis of diagnostic accuracy studies without a gold standard (Nikoloulopoulos, 2025) <doi:10.1093/biomtc/ujaf037>.

r-colorify 0.1.2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/mauritsunkel/colorify
Licenses: ASL 2.0
Build system: r
Synopsis: Intuitive Color and Palette Generation and Modification
Description:

This package provides a one-stop shop for intuitive and dependency-free color and palette creation and modification. Includes palettes and functionality from popular packages such as viridis', RColorBrewer', and base R grDevices', as well as ggplot2 plot bindings. Users can generate perceptually uniform and colorblind-friendly palettes, adjust palettes in HSL and RGB color spaces, map color gradients to value ranges, and create color-generating functions.

r-crmreg 1.0.4
Propagated dependencies: r-rrcov@1.7-7 r-robustbase@0.99-6 r-plyr@1.8.9 r-pcapp@2.0-5 r-gplots@3.2.0 r-ggplot2@4.0.1 r-fnn@1.1.4.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=crmReg
Licenses: GPL 2+
Build system: r
Synopsis: Cellwise Robust M-Regression and SPADIMO
Description:

Method for fitting a cellwise robust linear M-regression model (CRM, Filzmoser et al. (2020) <DOI:10.1016/j.csda.2020.106944>) that yields both a map of cellwise outliers consistent with the linear model, and a vector of regression coefficients that is robust against vertical outliers and leverage points. As a by-product, the method yields an imputed data set that contains estimates of what the values in cellwise outliers would need to amount to if they had fit the model. The package also provides diagnostic tools for analyzing casewise and cellwise outliers using sparse directions of maximal outlyingness (SPADIMO, Debruyne et al. (2019) <DOI:10.1007/s11222-018-9831-5>).

r-compositional-mle 1.0.2
Propagated dependencies: r-numderiv@2016.8-1.1 r-mass@7.3-65 r-algebraic-mle@0.9.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/queelius/compositional.mle
Licenses: Expat
Build system: r
Synopsis: Compositional Maximum Likelihood Estimation
Description:

This package provides composable optimization strategies for maximum likelihood estimation (MLE). Solvers are first-class functions that combine via sequential chaining, parallel racing, and random restarts. Implements gradient ascent, Newton-Raphson, quasi-Newton (BFGS), and derivative-free methods with support for constrained optimization and tracing. Returns mle objects compatible with algebraic.mle for downstream analysis. Methods based on Nocedal J, Wright SJ (2006) "Numerical Optimization" <doi:10.1007/978-0-387-40065-5>.

r-cmfrec 3.5.1-3
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/david-cortes/cmfrec
Licenses: Expat
Build system: r
Synopsis: Collective Matrix Factorization for Recommender Systems
Description:

Collective matrix factorization (a.k.a. multi-view or multi-way factorization, Singh, Gordon, (2008) <doi:10.1145/1401890.1401969>) tries to approximate a (potentially very sparse or having many missing values) matrix X as the product of two low-dimensional matrices, optionally aided with secondary information matrices about rows and/or columns of X', which are also factorized using the same latent components. The intended usage is for recommender systems, dimensionality reduction, and missing value imputation. Implements extensions of the original model (Cortes, (2018) <arXiv:1809.00366>) and can produce different factorizations such as the weighted implicit-feedback model (Hu, Koren, Volinsky, (2008) <doi:10.1109/ICDM.2008.22>), the weighted-lambda-regularization model, (Zhou, Wilkinson, Schreiber, Pan, (2008) <doi:10.1007/978-3-540-68880-8_32>), or the enhanced model with implicit features (Rendle, Zhang, Koren, (2019) <arXiv:1905.01395>), with or without side information. Can use gradient-based procedures or alternating-least squares procedures (Koren, Bell, Volinsky, (2009) <doi:10.1109/MC.2009.263>), with either a Cholesky solver, a faster conjugate gradient solver (Takacs, Pilaszy, Tikk, (2011) <doi:10.1145/2043932.2043987>), or a non-negative coordinate descent solver (Franc, Hlavac, Navara, (2005) <doi:10.1007/11556121_50>), providing efficient methods for sparse and dense data, and mixtures thereof. Supports L1 and L2 regularization in the main models, offers alternative most-popular and content-based models, and implements functionality for cold-start recommendations and imputation of 2D data.

r-coronavirus 0.4.1
Propagated dependencies: r-devtools@2.4.6
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/RamiKrispin/coronavirus
Licenses: Expat
Build system: r
Synopsis: The 2019 Novel Coronavirus COVID-19 (2019-nCoV) Dataset
Description:

This package provides a daily summary of the Coronavirus (COVID-19) cases by state/province. Data source: Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus <https://systems.jhu.edu/research/public-health/ncov/>.

r-corpustools 0.5.2
Propagated dependencies: r-wordcloud@2.6 r-udpipe@0.8.16 r-tokenbrowser@0.1.6 r-stringi@1.8.7 r-rsyntax@0.1.4 r-rnewsflow@1.2.8 r-rcppprogress@0.4.2 r-rcpp@1.1.0 r-r6@2.6.1 r-quanteda@4.3.1 r-pbapply@1.7-4 r-matrix@1.7-4 r-igraph@2.2.1 r-digest@0.6.39 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/kasperwelbers/corpustools
Licenses: GPL 3
Build system: r
Synopsis: Managing, Querying and Analyzing Tokenized Text
Description:

This package provides text analysis in R, focusing on the use of a tokenized text format. In this format, the positions of tokens are maintained, and each token can be annotated (e.g., part-of-speech tags, dependency relations). Prominent features include advanced Lucene-like querying for specific tokens or contexts (e.g., documents, sentences), similarity statistics for words and documents, exporting to DTM for compatibility with many text analysis packages, and the possibility to reconstruct original text from tokens to facilitate interpretation.

r-corset 0.1-5
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=corset
Licenses: GPL 3
Build system: r
Synopsis: Arbitrary Bounding of Series and Time Series Objects
Description:

Set of methods to constrain numerical series and time series within arbitrary boundaries.

r-cleanepi 1.1.2
Propagated dependencies: r-tibble@3.3.0 r-rlang@1.1.6 r-readr@2.1.6 r-numberize@1.0.2 r-matchmaker@0.1.1 r-magrittr@2.0.4 r-lubridate@1.9.4 r-linelist@2.0.1 r-janitor@2.2.1 r-dplyr@1.1.4 r-cli@3.6.5 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://epiverse-trace.github.io/cleanepi/
Licenses: Expat
Build system: r
Synopsis: Clean and Standardize Epidemiological Data
Description:

Cleaning and standardizing tabular data package, tailored specifically for curating epidemiological data. It streamlines various data cleaning tasks that are typically expected when working with datasets in epidemiology. It returns the processed data in the same format, and generates a comprehensive report detailing the outcomes of each cleaning task.

r-cnorm 3.5.1
Propagated dependencies: r-leaps@3.2 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://www.psychometrica.de/cNorm_en.html
Licenses: AGPL 3
Build system: r
Synopsis: Continuous Norming
Description:

This package provides a comprehensive toolkit for generating continuous test norms in psychometrics and biometrics, and analyzing model fit. The package offers both distribution-free modeling using Taylor polynomials and parametric modeling using the beta-binomial and the Sinh-Arcsinh distribution. Originally developed for achievement tests, it is applicable to a wide range of mental, physical, or other test scores dependent on continuous or discrete explanatory variables. The package provides several advantages: It minimizes deviations from representativeness in subsamples, interpolates between discrete levels of explanatory variables, and significantly reduces the required sample size compared to conventional norming per age group. cNORM enables graphical and analytical evaluation of model fit, accommodates a wide range of scales including those with negative and descending values, and even supports conventional norming. It generates norm tables including confidence intervals. It also includes methods for addressing representativeness issues through Iterative Proportional Fitting. Based on Lenhard et al. (2016) <doi:10.1177/1073191116656437>, Lenhard et al. (2019) <doi:10.1371/journal.pone.0222279>, Lenhard and Lenhard (2021) <doi:10.1177/0013164420928457> and Gary et al. (2023) <doi:10.1007/s00181-023-02456-0>.

r-coremicrobiomer 0.1.0
Propagated dependencies: r-vegan@2.7-2 r-srs@0.2.3 r-reshape2@1.4.5 r-plotly@4.11.0 r-ggrepel@0.9.6 r-ggplot2@4.0.1 r-fastmatch@1.1-6 r-edger@4.8.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CoreMicrobiomeR
Licenses: GPL 3
Build system: r
Synopsis: Identification of Core Microbiome
Description:

The Core Microbiome refers to the group of microorganisms that are consistently present in a particular environment, habitat, or host species. These microorganisms play a crucial role in the functioning and stability of that ecosystem. Identifying these microorganisms can contribute to the emerging field of personalized medicine. The CoreMicrobiomeR is designed to facilitate the identification, statistical testing, and visualization of this group of microorganisms.This package offers three key functions to analyze and visualize microbial community data. This package has been developed based on the research papers published by Pereira et al.(2018) <doi:10.1186/s12864-018-4637-6> and Beule L, Karlovsky P. (2020) <doi:10.7717/peerj.9593>.

r-coloc 5.2.3
Propagated dependencies: r-viridis@0.6.5 r-susier@0.14.2 r-ggplot2@4.0.1 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/chr1swallace/coloc
Licenses: GPL 2+ GPL 3+
Build system: r
Synopsis: Colocalisation Tests of Two Genetic Traits
Description:

This package performs the colocalisation tests described in Giambartolomei et al (2013) <doi:10.1371/journal.pgen.1004383>, Wallace (2020) <doi:10.1371/journal.pgen.1008720>, Wallace (2021) <doi:10.1371/journal.pgen.1009440>.

r-countprop 1.1.1
Propagated dependencies: r-zcompositions@1.5.0-5 r-glasso@1.11 r-compositions@2.0-9
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=countprop
Licenses: GPL 3+
Build system: r
Synopsis: Calculate Model-Based Metrics of Proportionality on Count-Based Compositional Data
Description:

Calculates metrics of proportionality using the logit-normal multinomial model. It can also provide empirical and plugin estimates of these metrics.

r-classmap 1.2.6
Propagated dependencies: r-scales@1.4.0 r-rpart@4.1.24 r-robustbase@0.99-6 r-randomforest@4.7-1.2 r-kernlab@0.9-33 r-gridextra@2.3 r-ggplot2@4.0.1 r-e1071@1.7-16 r-cluster@2.1.8.1 r-cellwise@2.5.5
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://doi.org/10.1080/00401706.2021.1927849
Licenses: GPL 2+
Build system: r
Synopsis: Visualizing Classification Results
Description:

This package provides tools to visualize the results of a classification or a regression. The graphical displays include stacked plots, silhouette plots, quasi residual plots, class maps, predictions plots, and predictions correlation plots. Implements the techniques described and illustrated in Raymaekers J., Rousseeuw P.J., Hubert M. (2022). Class maps for visualizing classification results. \emphTechnometrics, 64(2), 151â 165. \doi10.1080/00401706.2021.1927849 (open access), Raymaekers J., Rousseeuw P.J.(2022). Silhouettes and quasi residual plots for neural nets and tree-based classifiers. \emphJournal of Computational and Graphical Statistics, 31(4), 1332â 1343. \doi10.1080/10618600.2022.2050249, and Rousseeuw, P.J. (2025). Explainable Linear and Generalized Linear Models by the Predictions Plot. <doi:10.48550/arXiv.2412.16980> (open access). Examples can be found in the vignettes: "Discriminant_analysis_examples","K_nearest_neighbors_examples", "Support_vector_machine_examples", "Rpart_examples", "Random_forest_examples", "Neural_net_examples", and "predsplot_examples".

r-clifford 1.1-3
Propagated dependencies: r-rcpp@1.1.0 r-partitions@1.10-9 r-magrittr@2.0.4 r-freealg@1.1-8 r-disordr@0.9-8-5 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/RobinHankin/clifford
Licenses: GPL 2+
Build system: r
Synopsis: Arbitrary Dimensional Clifford Algebras
Description:

This package provides a suite of routines for Clifford algebras, using the Map class of the Standard Template Library. Canonical reference: Hestenes (1987, ISBN 90-277-1673-0, "Clifford algebra to geometric calculus"). Special cases including Lorentz transforms, quaternion multiplication, and Grassmann algebra, are discussed. Vignettes presenting conformal geometric algebra, quaternions and split quaternions, dual numbers, and Lorentz transforms are included. The package follows disordR discipline.

r-characterization 2.2.0
Propagated dependencies: r-sqlrender@1.19.4 r-rlang@1.1.6 r-resultmodelmanager@0.6.2 r-readr@2.1.6 r-parallellogger@3.5.1 r-featureextraction@3.12.0 r-dplyr@1.1.4 r-databaseconnector@7.1.0 r-checkmate@2.3.3 r-andromeda@1.2.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://ohdsi.github.io/Characterization/
Licenses: ASL 2.0
Build system: r
Synopsis: Implement Descriptive Studies Using the Common Data Model
Description:

An end-to-end framework that enables users to implement various descriptive studies for a given set of target and outcome cohorts for data mapped to the Observational Medical Outcomes Partnership Common Data Model.

r-calendar 0.2.0
Propagated dependencies: r-tibble@3.3.0 r-lubridate@1.9.4 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/atfutures/calendar
Licenses: ASL 2.0
Build system: r
Synopsis: Create, Read, Write, and Work with 'iCalendar' Files, Calendars and Scheduling Data
Description:

This package provides function to create, read, write, and work with iCalendar files (which typically have .ics or .ical extensions), and the scheduling data, calendars and timelines of people, organisations and other entities that they represent. iCalendar is an open standard for exchanging calendar and scheduling information between users and computers, described at <https://icalendar.org/>.

r-chessboard 0.1
Propagated dependencies: r-tidyr@1.3.1 r-sf@1.0-23 r-rlang@1.1.6 r-magrittr@2.0.4 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/frbcesab/chessboard
Licenses: GPL 2+
Build system: r
Synopsis: Create Network Connections Based on Chess Moves
Description:

This package provides functions to work with directed (asymmetric) and undirected (symmetric) spatial networks. It makes the creation of connectivity matrices easier, i.e. a binary matrix of dimension n x n, where n is the number of nodes (sampling units) indicating the presence (1) or the absence (0) of an edge (link) between pairs of nodes. Different network objects can be produced by chessboard': node list, neighbor list, edge list, connectivity matrix. It can also produce objects that will be used later in Moran's Eigenvector Maps (Dray et al. (2006) <doi:10.1016/j.ecolmodel.2006.02.015>) and Asymetric Eigenvector Maps (Blanchet et al. (2008) <doi:10.1016/j.ecolmodel.2008.04.001>), methods available in the package adespatial (Dray et al. (2023) <https://CRAN.R-project.org/package=adespatial>). This work is part of the FRB-CESAB working group Bridge <https://www.fondationbiodiversite.fr/en/the-frb-in-action/programs-and-projects/le-cesab/bridge/>.

r-ccpsyc 0.2.6
Propagated dependencies: r-xlsx@0.6.5 r-ufs@25.7.1 r-tidyr@1.3.1 r-tibble@3.3.0 r-rlang@1.1.6 r-readr@2.1.6 r-rcppalgos@2.9.3 r-psych@2.5.6 r-mcmcpack@1.7-1 r-magrittr@2.0.4 r-lavaan@0.6-20 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=ccpsyc
Licenses: GPL 3
Build system: r
Synopsis: Methods for Cross-Cultural Psychology
Description:

With the development of new cross-cultural methods this package is intended to combine multiple functions automating and simplifying functions providing a unified analysis approach for commonly employed methods.

r-cia 1.0.0
Propagated dependencies: r-tidyr@1.3.1 r-rlang@1.1.6 r-patchwork@1.3.2 r-igraph@2.2.1 r-grain@1.4.5 r-foreach@1.5.2 r-fastmatch@1.1-6 r-dplyr@1.1.4 r-doparallel@1.0.17 r-bnlearn@5.1 r-arrangements@1.1.9
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://spaceodyssey.github.io/cia/
Licenses: Expat
Build system: r
Synopsis: Learn and Apply Directed Acyclic Graphs for Causal Inference
Description:

Causal Inference Assistance (CIA) for performing causal inference within the structural causal modelling framework. Structure learning is performed using partition Markov chain Monte Carlo (Kuipers & Moffa, 2017) and several additional functions have been added to help with causal inference. Kuipers and Moffa (2017) <doi:10.1080/01621459.2015.1133426>.

r-coxicpen 1.1.0
Propagated dependencies: r-foreach@1.5.2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://doi.org/10.1080/01621459.2018.1537922
Licenses: FSDG-compatible
Build system: r
Synopsis: Variable Selection for Cox's Model with Interval-Censored Data
Description:

Perform variable selection for Cox regression model with interval-censored data. Can deal with both low-dimensional and high-dimensional data. Case-cohort design can be incorporated. Two sets of covariates scenario can also be considered. The references are listed in the URL below.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283