Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Classifies the type of cancer using routinely collected data commonly found in cancer registries from pathology reports. The package implements the International Classification of Diseases for Oncology, 3rd Edition site (topography), histology (morphology), and behaviour codes of neoplasms to classify cancer type <https://www.who.int/standards/classifications/other-classifications/international-classification-of-diseases-for-oncology>. Classification in children utilize the International Classification of Childhood Cancer by Steliarova-Foucher et al. (2005) <doi:10.1002/cncr.20910>. Adolescent and young adult cancer classification is based on Barr et al. (2020) <doi:10.1002/cncr.33041>.
Perform likelihood estimation and corresponding analysis under the copula-based Markov chain model for serially dependent event times with a dependent terminal event. Available are statistical methods in Huang, Wang and Emura (2020, JJSD accepted).
Small package to clean the R console and the R environment with the call of just one function.
Solves for the mean parameters, the variance parameter, and their asymptotic variance in a conditional GEE for recurrent event gap times, as described by Clement and Strawderman (2009) in the journal Biostatistics. Makes a parametric assumption for the length of the censored gap time.
Allows users to seamlessly query several CDC PLACES APIs (<https://data.cdc.gov/browse?q=PLACES%20&sortBy=relevance>) by geography, state, measure, and release year. This package also contains a function to explore the available measures for each release year.
It fits linear regression models for censored spatial data. It provides different estimation methods as the SAEM (Stochastic Approximation of Expectation Maximization) algorithm and seminaive that uses Kriging prediction to estimate the response at censored locations and predict new values at unknown locations. It also offers graphical tools for assessing the fitted model. More details can be found in Ordonez et al. (2018) <doi:10.1016/j.spasta.2017.12.001>.
This package contains Coverage Adjusted Standardized Mutual Information ('CASMI')-based functions. CASMI is a fundamental concept of a series of methods. For more information about CASMI and CASMI'-related methods, please refer to the corresponding publications (e.g., a feature selection method, Shi, J., Zhang, J., & Ge, Y. (2019) <doi:10.3390/e21121179>, and a dataset quality measurement method, Shi, J., Zhang, J., & Ge, Y. (2019) <doi:10.1109/ICHI.2019.8904553>) or contact the package author for the latest updates.
Find multiple solutions of a nonlinear least squares problem. Cluster Gauss-Newton method does not assume uniqueness of the solution of the nonlinear least squares problem and compute multiple minimizers. Please cite the following paper when this software is used in your research: Aoki et al. (2020) <doi:10.1007/s11081-020-09571-2>. Cluster Gaussâ Newton method. Optimization and Engineering, 1-31. Please cite the following paper when profile likelihood plot is drawn with this software and used in your research: Aoki and Sugiyama (2024) <doi:10.1002/psp4.13055>. Cluster Gauss-Newton method for a quick approximation of profile likelihood: With application to physiologically-based pharmacokinetic models. CPT Pharmacometrics Syst Pharmacol.13(1):54-67. GPT based helper bot available at <https://chatgpt.com/g/g-684936db9e748191a2796debb00cd755-cluster-gauss-newton-method-helper-bot> .
Returns an edit-distance based clusterization of an input vector of strings. Each cluster will contain a set of strings w/ small mutual edit-distance (e.g., Levenshtein, optimum-sequence-alignment, Damerau-Levenshtein), as computed by stringdist::stringdist(). The set of all mutual edit-distances is then used by graph algorithms (from package igraph') to single out subsets of high connectivity.
Causal Distillation Tree (CDT) is a novel machine learning method for estimating interpretable subgroups with heterogeneous treatment effects. CDT allows researchers to fit any machine learning model (or metalearner) to estimate heterogeneous treatment effects for each individual, and then "distills" these predicted heterogeneous treatment effects into interpretable subgroups by fitting an ordinary decision tree to predict the previously-estimated heterogeneous treatment effects. This package provides tools to estimate causal distillation trees (CDT), as detailed in Huang, Tang, and Kenney (2025) <doi:10.48550/arXiv.2502.07275>.
This package contains generic functions for performing cross validation and for computing diagnostic errors.
This package contains functions to estimate a smoothed and a non-smoothed (empirical) time-dependent receiver operating characteristic curve and the corresponding area under the receiver operating characteristic curve and the optimal cutoff point for the right and interval censored survival data. See Beyene and El Ghouch (2020)<doi:10.1002/sim.8671> and Beyene and El Ghouch (2022) <doi:10.1002/bimj.202000382>.
Implementations of recent complex-valued wavelet shrinkage procedures for smoothing irregularly sampled signals, see Hamilton et al (2018) <doi:10.1080/00401706.2017.1281846>.
Reconstruct networks from multi-omics data sets with the collaborative graphical lasso (coglasso) algorithm described in Albanese, A., Kohlen, W., and Behrouzi, P. (2024) <doi:10.48550/arXiv.2403.18602>. Use the main wrapper function `bs()` to build and select a multi-omics network.
Conditional mixture model fitted via EM (Expectation Maximization) algorithm for model-based clustering, including parsimonious procedure, optimal conditional order exploration, and visualization.
Identification of cardinal dates (begin, time of maximum, end of mass developments) in ecological time series using fitted Weibull functions.
There are 6 novel robust tests for equal correlation. They are all based on logistic regressions. The score statistic U is proportion to difference of two correlations based on different types of correlation in 6 methods. The ST1() is based on Pearson correlation. ST2() improved ST1() by using median absolute deviation. ST3() utilized type M correlation and ST4() used Spearman correlation. ST5() and ST6() used two different ways to combine ST3() and ST4(). We highly recommend ST5() according to the article titled New Statistical Methods for Constructing Robust Differential Correlation Networks to characterize the interactions among microRNAs published in Scientific Reports. Please see the reference: Yu et al. (2019) <doi:10.1038/s41598-019-40167-8>.
Create Pairwise Comparison Matrices for use in the Analytic Hierarchy Process. The Pairwise Comparison Matrix created will be a logical matrix, which unlike a random comparison matrix, is similar to what a rational decision maker would create on the basis of a preference vector for the alternatives considered.
This package provides tools for calculating coordinate representations of hypocycloids, epicyloids, hypotrochoids, and epitrochoids (altogether called cycloids here) with different scaling and positioning options. The cycloids can be visualised with any appropriate graphics function in R.
Every research team have their own script for calculation of hemodynamic indexes. This package makes it possible to insert a long-format dataframe, and add both periods of interest (trigger-periods), and delete artifacts with deleter-files.
This package provides a programmatic interface to the Chromosome Counts Database (<https://ccdb.tau.ac.il/>), Rice et al. (2014) <doi:10.1111/nph.13191>. This package is part of the ROpenSci suite (<https://ropensci.org>).
This package performs least squares constrained optimization on a linear objective function. It contains a number of algorithms to choose from and offers a formula syntax similar to lm().
While data from randomized experiments remain the gold standard for causal inference, estimation of causal estimands from observational data is possible through various confounding adjustment methods. However, the challenge of unmeasured confounding remains a concern in causal inference, where failure to account for unmeasured confounders can lead to biased estimates of causal estimands. Sensitivity analysis within the framework of causal inference can help adjust for possible unmeasured confounding. In `causens`, three main methods are implemented: adjustment via sensitivity functions (Brumback, Hernán, Haneuse, and Robins (2004) <doi:10.1002/sim.1657> and Li, Shen, Wu, and Li (2011) <doi:10.1093/aje/kwr096>), Bayesian parametric modelling and Monte Carlo approaches (McCandless, Lawrence C and Gustafson, Paul (2017) <doi:10.1002/sim.7298>).
Calculation of various common and less common comfort indices such as predicted mean vote or the two node model. Converts physical variables such as relative to absolute humidity and evaluates the performance of comfort indices.