Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An R client for the currencyapi.com currency conversion API. The API requires registration of an API key. Basic features are free, some require a paid subscription. You can find the full API documentation at <https://currencyapi.com/docs> .
This package contains a time series classification method that obtains a set of filters that maximize the between-class and minimize the within-class distances.
Generates a visualization of binary classifier performance as a grid of diagnostic plots with just one function call. Includes ROC curves, prediction density, accuracy, precision, recall and calibration plots, all using ggplot2 for easy modification. Debug your binary classifiers faster and easier!
This package provides methods for interpreting CoDa (Compositional Data) regression models along the lines of "Pairwise share ratio interpretations of compositional regression models" (Dargel and Thomas-Agnan 2024) <doi:10.1016/j.csda.2024.107945>. The new methods include variation scenarios, elasticities, elasticity differences and share ratio elasticities. These tools are independent of log-ratio transformations and allow an interpretation in the original space of shares. CoDaImpact is designed to be used with the compositions package and its ecosystem.
Computes a structural similarity metric (after the style of MS-SSIM for images) for binary and categorical 2D and 3D images. Can be based on accuracy (simple matching), Cohen's kappa, Rand index, adjusted Rand index, Jaccard index, Dice index, normalized mutual information, or adjusted mutual information. In addition, has fast computation of Cohen's kappa, the Rand indices, and the two mutual informations. Implements the methods of Thompson and Maitra (2020) <doi:10.48550/arXiv.2004.09073>.
Identification and visualization of groups of closely spaced mutations in the DNA sequence of cancer genome. The extremely mutated zones are searched in the symmetric dissimilarity matrix using the anti-Robinson matrix properties. Different data sets are obtained to describe and plot the clustered mutations information.
Package contains functions for analyzing check-all-that-apply (CATA) data from consumer and sensory tests. Cochran's Q test, McNemar's test, and Penalty-Lift analysis are provided; for details, see Meyners, Castura & Carr (2013) <doi:10.1016/j.foodqual.2013.06.010>. Cluster analysis can be performed using b-cluster analysis, then evaluated using various measures; for details, see Castura, Meyners, Varela & Næs (2022) <doi:10.1016/j.foodqual.2022.104564>. Consumers can also be clustered on their product-related hedonic responses; see Castura, Meyners, Pohjanheimo, Varela & Næs (2023) <doi:10.1111/joss.12860>. Permutation tests based on the L1-norm methods are provided; for details, see Chaya, Castura & Greenacre (2025) <doi:10.1016/j.foodqual.2025.105639>.
Allows Brownian motion, fractional Brownian motion, and integrated Ornstein-Uhlenbeck process components to be added to linear and non-linear mixed effects models using the structures and methods of the nlme package.
This package provides functions for clustering regions that form convergence clubs, according to the definition of Phillips and Sul (2009) <doi:10.1002/jae.1080>. A package description is available in Sichera and Pizzuto (2019).
This package implements cluster-polarization coefficient for measuring distributional polarization in single or multiple dimensions, as well as associated functions. Contains support for hierarchical clustering, k-means, partitioning around medoids, density-based spatial clustering with noise, and manually imposed cluster membership. Mehlhaff (2024) <doi:10.1017/S0003055423001041>.
This package provides correlation-based penalty estimators for both linear and logistic regression models by implementing a new regularization method that incorporates correlation structures within the data. This method encourages a grouping effect where strongly correlated predictors tend to be in or out of the model together. See Tutz and Ulbricht (2009) <doi:10.1007/s11222-008-9088-5> and Algamal and Lee (2015) <doi:10.1016/j.eswa.2015.08.016>.
Retrieves historical versions of clinical trial registry entries from <https://ClinicalTrials.gov>. Package functionality and implementation for v 1.0.0 is documented in Carlisle (2022) <DOI:10.1371/journal.pone.0270909>.
Information on activities to promote scholarships in Brazil and abroad for international mobility programs, recorded in Capes computerized payment systems. The CAPES database refers to international mobility programs for the period from 2010 to 2019 <https://dadosabertos.capes.gov.br/dataset/>.
Takes the outputs of a caret confusion matrix and allows for the quick conversion of these list items to lists. The intended usage is to allow the tool to work with the outputs of machine learning classification models. This tool works with classification problems for binary and multi-classification problems and allows for the record level conversion of the confusion matrix outputs. This is useful, as it allows quick conversion of these objects for storage in database systems and to track ML model performance over time. Traditionally, this approach has been used for highlighting model representation and feature slippage.
The causalsens package provides functions to perform sensitivity analyses and to study how various assumptions about selection bias affects estimates of causal effects.
This package provides a new methodology for linear regression with both curve response and curve regressors, which is described in Cho, Goude, Brossat and Yao (2013) <doi:10.1080/01621459.2012.722900> and (2015) <doi:10.1007/978-3-319-18732-7_3>. The key idea behind this methodology is dimension reduction based on a singular value decomposition in a Hilbert space, which reduces the curve regression problem to several scalar linear regression problems.
This package performs a Correspondence Analysis (CA) on a contingency table and creates a scatterplot of the row and column points on the selected dimensions. Optionally, the function can add segments to the plot to visualize significant associations between row and column categories on the basis of positive (unadjusted) standardized residuals larger than a given threshold.
Create and integrate maps in your R workflow. This package helps to design cartographic representations such as proportional symbols, choropleth, typology, flows or discontinuities maps. It also offers several features that improve the graphic presentation of maps, for instance, map palettes, layout elements (scale, north arrow, title...), labels or legends. See Giraud and Lambert (2017) <doi:10.1007/978-3-319-57336-6_13>.
Imports and cleans opencovid19-fr <https://github.com/opencovid19-fr/data> data on COVID-19 in France.
Wrapper around the Canadian Mortgage and Housing Corporation (CMHC) web interface. It enables programmatic and reproducible access to a wide variety of housing data from CMHC.
Create interactive charts with the C3.js <http://c3js.org/> charting library. All plot types in C3.js are available and include line, bar, scatter, and mixed geometry plots. Plot annotations, labels and axis are highly adjustable. Interactive web based charts can be embedded in R Markdown documents or Shiny web applications.
This package contains functions for estimating generalized parametric mixture and non-mixture cure models <doi:10.1016/j.cmpb.2022.107125>, loss of lifetime, mean residual lifetime, and crude event probabilities.
An investigative tool designed to help users visualize correlations between variables in their datasets. This package aims to provide an easy and effective way to explore and visualize these correlations, making it easier to interpret and communicate results.
Use machine learning algorithms and advanced geographic information system tools to build Species Distribution Modeling in a extensible and modern fashion.