Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the Centroid Decision Forest (CDF) as a single user-facing function CDF(). The method selects discriminative features via a multi-class class separability score (CSS), splits by nearest class centroid, and aggregates tree votes to produce predictions and class probabilities. Returns CSS-based feature importance as well. Amjad Ali, Saeed Aldahmani, Zardad Khan (2025) <doi:10.48550/arXiv.2503.19306>.
Convolute probabilistic distributions using the random generator function of each distribution. A new random number generator function is created that perform the mathematical operation on the individual random samples from the random generator function of each distribution. See the documentation for examples.
Reduction-based techniques for cost-sensitive multi-class classification, in which each observation has a different cost for classifying it into one class, and the goal is to predict the class with the minimum expected cost for each new observation. Implements Weighted All-Pairs (Beygelzimer, A., Langford, J., & Zadrozny, B., 2008, <doi:10.1007/978-0-387-79361-0_1>), Weighted One-Vs-Rest (Beygelzimer, A., Dani, V., Hayes, T., Langford, J., & Zadrozny, B., 2005, <https://dl.acm.org/citation.cfm?id=1102358>) and Regression One-Vs-Rest. Works with arbitrary classifiers taking observation weights, or with regressors. Also implements cost-proportionate rejection sampling for working with classifiers that don't accept observation weights.
Estimates a lasso penalized precision matrix via the blockwise coordinate descent (BCD). This package is a simple wrapper around the popular glasso package that extends and enhances its capabilities. These enhancements include built-in cross validation and visualizations. See Friedman et al (2008) <doi:10.1093/biostatistics/kxm045> for details regarding the estimation method.
Uses data from the EPSG Registry to look up suitable coordinate reference system transformations for spatial datasets in R. Returns a data frame with CRS codes that can be used for CRS transformation and mapping projects. Please see the EPSG Dataset Terms of Use at <https://epsg.org/terms-of-use.html> for more information.
This package provides a wrapper around the COVID Tracking Project API <https://covidtracking.com/api/> providing data on cases of COVID-19 in the US.
Perform post hoc analysis based on residuals of Pearson's Chi-squared Test for Count Data based on T. Mark Beasley & Randall E. Schumacker (1995) <doi: 10.1080/00220973.1995.9943797>.
This package provides interactive command-line menu functionality with single and multiple selection menus, keyboard navigation (arrow keys or vi-style j/k), preselection, and graceful fallback for non-interactive environments. Inspired by tools such as inquirer.js <https://github.com/SBoudrias/Inquirer.js>, pick <https://github.com/aisk/pick>, and survey <https://github.com/AlecAivazis/survey>. Designed to be lightweight and easy to integrate into R packages and scripts.
Column Text Format (CTF) is a new tabular data format designed for simplicity and performance. CTF is the simplest column store you can imagine: plain text files for each column in a table, and a metadata file. The underlying plain text means the data is human readable and familiar to programmers, unlike specialized binary formats. CTF is faster than row oriented formats like CSV when loading a subset of the columns in a table. This package provides functions to read and write CTF data from R.
Puzzle game that can be played in the R console. Help the alien to find the ship.
This package performs cryptographic randomness tests on a sequence of random integers or bits. Included tests are greatest common divisor, birthday spacings, book stack, adaptive chi-square, topological binary, and three random walk tests (Ryabko and Monarev, 2005) <doi:10.1016/j.jspi.2004.02.010>. Tests except greatest common divisor and birthday spacings are not covered by standard test suites. In addition to the chi-square goodness-of-fit test, results of Anderson-Darling, Kolmogorov-Smirnov, and Jarque-Bera tests are also generated by some of the cryptographic randomness tests.
An interface to the cycle routing/data services provided by CycleStreets', a not-for-profit social enterprise and advocacy organisation. The application programming interfaces (APIs) provided by CycleStreets are documented at (<https://www.cyclestreets.net/api/>). The focus of this package is the journey planning API, which aims to emulate the routes taken by a knowledgeable cyclist. An innovative feature of the routing service of its provision of fastest, quietest and balanced profiles. These represent routes taken to minimise time, avoid traffic and compromise between the two, respectively.
This package provides methods for analyzing (cell) motion in two or three dimensions. Available measures include displacement, confinement ratio, autocorrelation, straightness, turning angle, and fractal dimension. Measures can be applied to entire tracks, steps, or subtracks with varying length. While the methodology has been developed for cell trajectory analysis, it is applicable to anything that moves including animals, people, or vehicles. Some of the methodology implemented in this packages was described by: Beauchemin, Dixit, and Perelson (2007) <doi:10.4049/jimmunol.178.9.5505>, Beltman, Maree, and de Boer (2009) <doi:10.1038/nri2638>, Gneiting and Schlather (2004) <doi:10.1137/S0036144501394387>, Mokhtari, Mech, Zitzmann, Hasenberg, Gunzer, and Figge (2013) <doi:10.1371/journal.pone.0080808>, Moreau, Lemaitre, Terriac, Azar, Piel, Lennon-Dumenil, and Bousso (2012) <doi:10.1016/j.immuni.2012.05.014>, Textor, Peixoto, Henrickson, Sinn, von Andrian, and Westermann (2011) <doi:10.1073/pnas.1102288108>, Textor, Sinn, and de Boer (2013) <doi:10.1186/1471-2105-14-S6-S10>, Textor, Henrickson, Mandl, von Andrian, Westermann, de Boer, and Beltman (2014) <doi:10.1371/journal.pcbi.1003752>.
This function conducts the Cochran-Armitage trend test to a 2 by k contingency table. It will report the test statistic (Z) and p-value.A linear trend in the frequencies will be calculated, because the weights (0,1,2) will be used by default.
Wrapper functions to model and extract various quantitative information from absorption spectra of chromophoric dissolved organic matter (CDOM).
This package provides functions for identifying, fitting, and applying continuous-space, continuous-time stochastic-process movement models to animal tracking data. The package is described in Calabrese et al (2016) <doi:10.1111/2041-210X.12559>, with models and methods based on those introduced and detailed in Fleming & Calabrese et al (2014) <doi:10.1086/675504>, Fleming et al (2014) <doi:10.1111/2041-210X.12176>, Fleming et al (2015) <doi:10.1103/PhysRevE.91.032107>, Fleming et al (2015) <doi:10.1890/14-2010.1>, Fleming et al (2016) <doi:10.1890/15-1607>, Péron & Fleming et al (2016) <doi:10.1186/s40462-016-0084-7>, Fleming & Calabrese (2017) <doi:10.1111/2041-210X.12673>, Péron et al (2017) <doi:10.1002/ecm.1260>, Fleming et al (2017) <doi:10.1016/j.ecoinf.2017.04.008>, Fleming et al (2018) <doi:10.1002/eap.1704>, Winner & Noonan et al (2018) <doi:10.1111/2041-210X.13027>, Fleming et al (2019) <doi:10.1111/2041-210X.13270>, Noonan & Fleming et al (2019) <doi:10.1186/s40462-019-0177-1>, Fleming et al (2020) <doi:10.1101/2020.06.12.130195>, Noonan et al (2021) <doi:10.1111/2041-210X.13597>, Fleming et al (2022) <doi:10.1111/2041-210X.13815>, Silva et al (2022) <doi:10.1111/2041-210X.13786>, Alston & Fleming et al (2023) <doi:10.1111/2041-210X.14025>.
Package encapsulates standard expressions for distances, times, luminosities, and other quantities useful in observational cosmology, including molecular line observations. Currently coded for a flat universe only.
This package provides a flexible and robust joint test of the single nucleotide polymorphism (SNP) main effect and genotype-by-treatment interaction effect for continuous and binary endpoints. Two analytic procedures, Cauchy weighted joint test (CWOT) and adaptively weighted joint test (AWOT), are proposed to accurately calculate the joint test p-value. The proposed methods are evaluated through extensive simulations under various scenarios. The results show that the proposed AWOT and CWOT control type I error well and outperform existing methods in detecting the most interesting signal patterns in pharmacogenetics (PGx) association studies. For reference, see Hong Zhang, Devan Mehrotra and Judong Shen (2022) <doi:10.13140/RG.2.2.28323.53280>.
Customized training is a simple technique for transductive learning, when the test covariates are known at the time of training. The method identifies a subset of the training set to serve as the training set for each of a few identified subsets in the training set. This package implements customized training for the glmnet() and cv.glmnet() functions.
Data stored in text file can be processed chunkwise using dplyr commands. These are recorded and executed per data chunk, so large files can be processed with limited memory using the LaF package.
Utility functions for the statistical analysis of corpus frequency data. This package is a companion to the open-source course "Statistical Inference: A Gentle Introduction for Computational Linguists and Similar Creatures" ('SIGIL').
This package implements a Ward-like hierarchical clustering algorithm including soft spatial/geographical constraints.
This package contains functions to estimate the Correlation-Adjusted Regression Survival (CARS) Scores. The method is described in Welchowski, T. and Zuber, V. and Schmid, M., (2018), Correlation-Adjusted Regression Survival Scores for High-Dimensional Variable Selection, <arXiv:1802.08178>.
Composite Kernel Machine Regression based on Likelihood Ratio Test (CKLRT): in this package, we develop a kernel machine regression framework to model the overall genetic effect of a SNP-set, considering the possible GE interaction. Specifically, we use a composite kernel to specify the overall genetic effect via a nonparametric function and we model additional covariates parametrically within the regression framework. The composite kernel is constructed as a weighted average of two kernels, one corresponding to the genetic main effect and one corresponding to the GE interaction effect. We propose a likelihood ratio test (LRT) and a restricted likelihood ratio test (RLRT) for statistical significance. We derive a Monte Carlo approach for the finite sample distributions of LRT and RLRT statistics. (N. Zhao, H. Zhang, J. Clark, A. Maity, M. Wu. Composite Kernel Machine Regression based on Likelihood Ratio Test with Application for Combined Genetic and Gene-environment Interaction Effect (Submitted).).