Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Evaluate arbitrary function calls using workers on HPC schedulers in single line of code. All processing is done on the network without accessing the file system. Remote schedulers are supported via SSH.
This package implements a joint cointegration testing approach that combines Engle-Granger, Johansen maximum eigenvalue, Boswijk, and Banerjee tests into a unified test-statistic for the null of non-cointegration. Also see Bayer and Hanck (2013) <doi:10.1111/j.1467-9892.2012.00814.x>.
This package provides functions for the estimation of conditional copulas models, various estimators of conditional Kendall's tau (proposed in Derumigny and Fermanian (2019a, 2019b, 2020) <doi:10.1515/demo-2019-0016>, <doi:10.1016/j.csda.2019.01.013>, <doi:10.1016/j.jmva.2020.104610>), test procedures for the simplifying assumption (proposed in Derumigny and Fermanian (2017) <doi:10.1515/demo-2017-0011> and Derumigny, Fermanian and Min (2022) <doi:10.1002/cjs.11742>), and measures of non-simplifyingness (proposed in Derumigny (2025) <doi:10.48550/arXiv.2504.07704>).
This package creates a common framework for organizing, naming, and gathering population, age, race, and ethnicity data from the Census Bureau. Accesses the API <https://www.census.gov/data/developers/data-sets.html>. Provides tools for adding information to existing data to line up with Census data.
Data package for the supplementary data in Prem et al. (2017) <doi:10.1371/journal.pcbi.1005697> and Prem et al. <doi:10.1371/journal.pcbi.1009098>. Provides easy access to contact data for 177 countries, for use in epidemiological, demographic or social sciences research.
Generate cohorts and subsets using an Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) Database. Cohorts are defined using CIRCE (<https://github.com/ohdsi/circe-be>) or SQL compatible with SqlRender (<https://github.com/OHDSI/SqlRender>).
Designed for web usage data analysis, it implements tools to process web sequences and identify web browsing profiles through sequential classification. Sequences clusters are identified by using a model-based approach, specifically mixture of discrete time first-order Markov models for categorical web sequences. A Bayesian approach is used to estimate model parameters and identify sequences classification as proposed by Fruehwirth-Schnatter and Pamminger (2010) <doi:10.1214/10-BA606>.
Java JAR files for the Apache Commons Mathematics Library for use by users and other packages.
The biases introduced in association measures, particularly mutual information, are influenced by factors such as tumor purity, mutation burden, and hypermethylation. This package provides the estimation of conditional mutual information (CMI) and its statistical significance with a focus on its application to multi-omics data. Utilizing B-spline functions (inspired by Daub et al. (2004) <doi:10.1186/1471-2105-5-118>), the package offers tools to estimate the association between heterogeneous multi- omics data, while removing the effects of confounding factors. This helps to unravel complex biological interactions. In addition, it includes methods to evaluate the statistical significance of these associations, providing a robust framework for multi-omics data integration and analysis. This package is ideal for researchers in computational biology, bioinformatics, and systems biology seeking a comprehensive tool for understanding interdependencies in omics data.
Computes conditional multivariate normal densities, probabilities, and random deviates.
Method for identifying the instar of Curculionid larvae from the observed distribution of the headcapsule size of mature larvae.
Calculates and visualises cumulative percent decay curves, which are typically calculated from metagenomic taxonomic profiles. These can be used to estimate the level of expected endogenous taxa at different abundance levels retrieved from metagenomic samples, when comparing to samples of known sampling site or source. Method described in Fellows Yates, J. A. et. al. (2021) Proceedings of the National Academy of Sciences USA <doi:10.1073/pnas.2021655118>.
Gene Symbols or Ensembl Gene IDs are converted using the Bimap interface in AnnotationDbi in convertId2() but that function is only provided as fallback mechanism for the most common use cases in data analysis. The main function in the package is convert.bm() which queries BioMart using the full capacity of the API provided through the biomaRt package. Presets and defaults are provided for convenience but all "marts", "filters" and "attributes" can be set by the user. Function convert.alias() converts Gene Symbols to Aliases and vice versa and function likely_symbol() attempts to determine the most likely current Gene Symbol.
Facilitates local polynomial regression for state dependent covariates in state-space models. The functionality can also be used from C++ based model builder tools such as Rcpp'/'inline', TMB', or JAGS'.
Enables simultaneous statistical inference for the accuracy of multiple classifiers in multiple subgroups (strata). For instance, allows to perform multiple comparisons in diagnostic accuracy studies with co-primary endpoints sensitivity and specificity (Westphal M, Zapf A. Statistical inference for diagnostic test accuracy studies with multiple comparisons. Statistical Methods in Medical Research. 2024;0(0). <doi:10.1177/09622802241236933>).
Plot confidence interval from the objects of statistical tests such as t.test(), var.test(), cor.test(), prop.test() and fisher.test() ('htest class), Tukey test [TukeyHSD()], Dunnett test [glht() in multcomp package], logistic regression [glm()], and Tukey or Games-Howell test [posthocTGH() in userfriendlyscience package]. Users are able to set the styles of lines and points. This package contains the function to calculate odds ratios and their confidence intervals from the result of logistic regression.
Simulates clinical trials and summarizes causal effects and treatment policy estimands in the presence of intercurrent events in a transparent and intuitive manner.
Terrestrial maps with simplified topologies for Census Divisions, Agricultural Regions, Economic Regions, Federal Electoral Divisions and Provinces.
The Confidence Bound Target (CBT) algorithm is designed for infinite arms bandit problem. It is shown that CBT algorithm achieves the regret lower bound for general reward distributions. Reference: Hock Peng Chan and Shouri Hu (2018) <arXiv:1805.11793>.
This package provides functions for reading in and manipulating CRU TS3.21: Climatic Research Unit (CRU) Time-Series (TS) Version 3.21 data.
Monte Carlo simulation framework for different randomized clinical trial designs with a special emphasis on estimators based on covariate adjustment. The package implements regression-based covariate adjustment (Rosenblum & van der Laan (2010) <doi:10.2202/1557-4679.1138>) and a one-step estimator (Van Lancker et al (2024) <doi:10.48550/arXiv.2404.11150>) for trials with continuous, binary and count outcomes. The estimation of the minimum sample-size required to reach a specified statistical power for a given estimator uses bisection to find an initial rough estimate, followed by stochastic approximation (Robbins-Monro (1951) <doi:10.1214/aoms/1177729586>) to improve the estimate, and finally, a grid search to refine the estimate in the neighborhood of the current best solution.
This package provides functions for implementing the novel algorithm CASCORE, which is designed to detect latent community structure in graphs with node covariates. This algorithm can handle models such as the covariate-assisted degree corrected stochastic block model (CADCSBM). CASCORE specifically addresses the disagreement between the community structure inferred from the adjacency information and the community structure inferred from the covariate information. For more detailed information, please refer to the reference paper: Yaofang Hu and Wanjie Wang (2022) <arXiv:2306.15616>. In addition to CASCORE, this package includes several classical community detection algorithms that are compared to CASCORE in our paper. These algorithms are: Spectral Clustering On Ratios-of Eigenvectors (SCORE), normalized PCA, ordinary PCA, network-based clustering, covariates-based clustering and covariate-assisted spectral clustering (CASC). By providing these additional algorithms, the package enables users to compare their performance with CASCORE in community detection tasks.
This package implements the chain binomial model for analysis of infectious disease data. Contains functions for calculating probabilities of the final size of infectious disease outbreaks using the method from D. Ludwig (1975) <doi:10.1016/0025-5564(75)90119-4> and for outbreaks that are not concluded, from Lindstrøm et al. (2024) <doi:10.48550/arXiv.2403.03948>. The package also contains methods for estimation and regression analysis of secondary attack rates.
Indicators and measures by country and time describe what happens at economic and social levels. This package provides functions to calculate several measures of convergence after imputing missing values. The automated downloading of Eurostat data, followed by the production of country fiches and indicator fiches, makes possible to produce automated reports. The Eurofound report (<doi:10.2806/68012>) "Upward convergence in the EU: Concepts, measurements and indicators", 2018, is a detailed presentation of convergence.