Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a candidate correspondence table between two classifications can be created when there are correspondence tables leading from the first classification to the second one via intermediate pivot classifications. The correspondence table between two statistical classifications can be updated when one of the classifications gets updated to a new version.
Bayesian fit of a Dirichlet Process Mixture with hierarchical multivariate skew normal kernels and coarsened posteriors. For more information, see Gorsky, Chan and Ma (2024) <doi:10.1214/22-BA1356>.
This small library contains a series of simple tools for constructing and manipulating confounded and fractional factorial designs.
Download imagery tiles to a standard cache and load the data into raster objects. Facilities for AWS terrain <https://registry.opendata.aws/terrain-tiles/> terrain and Mapbox <https://www.mapbox.com/> servers are provided.
Solves optimal pairing and matching problems using linear assignment algorithms. Provides implementations of the Hungarian method (Kuhn 1955) <doi:10.1002/nav.3800020109>, Jonker-Volgenant shortest path algorithm (Jonker and Volgenant 1987) <doi:10.1007/BF02278710>, Auction algorithm (Bertsekas 1988) <doi:10.1007/BF02186476>, cost-scaling (Goldberg and Kennedy 1995) <doi:10.1007/BF01585996>, scaling algorithms (Gabow and Tarjan 1989) <doi:10.1137/0218069>, push-relabel (Goldberg and Tarjan 1988) <doi:10.1145/48014.61051>, and Sinkhorn entropy-regularized transport (Cuturi 2013) <doi:10.48550/arxiv.1306.0895>. Designed for matching plots, sites, samples, or any pairwise optimization problem. Supports rectangular matrices, forbidden assignments, data frame inputs, batch solving, k-best solutions, and pixel-level image morphing for visualization. Includes automatic preprocessing with variable health checks, multiple scaling methods (standardized, range, robust), greedy matching algorithms, and comprehensive balance diagnostics for assessing match quality using standardized differences and distribution comparisons.
DNA methylation signatures are usually based on multivariate approaches that require hundreds of sites for predictions. CimpleG is a method for the detection of small CpG methylation signatures used for cell-type classification and deconvolution. CimpleG is time efficient and performs as well as top performing methods for cell-type classification of blood cells and other somatic cells, while basing its prediction on a single DNA methylation site per cell type (but users can also select more sites if they so wish). Users can train cell type classifiers ('CimpleG based, and others) and directly apply these in a deconvolution of cell mixes context. Altogether, CimpleG provides a complete computational framework for the delineation of DNAm signatures and cellular deconvolution. For more details see Maié et al. (2023) <doi:10.1186/s13059-023-03000-0>.
This package provides a convenient tool to store and format browser cookies and use them in HTTP requests (for example, through httr2', httr or curl').
The statistical analysis of circular data using distributions based on symmetric Nonnegative Trigonometric Sums (NNTS). It includes functions to perform empirical analysis and estimate the parameters of density functions. Fernandez-Duran, J.J. and Gregorio-Dominguez, M.M. (2025), "Multimodal Symmetric Circular Distributions Based on Nonnegative Trigonometric Sums and a Likelihood Ratio Test for Reflective Symmetry", <doi:10.48550/arXiv.2412.19501>.
In many cases, experiments must be repeated across multiple seasons or locations to ensure applicability of findings. A single experiment conducted in one location and season may yield limited conclusions, as results can vary under different environmental conditions. In agricultural research, treatment à location and treatment à season interactions play a crucial role. Analyzing a series of experiments across diverse conditions allows for more generalized and reliable recommendations. The CANE package facilitates the pooled analysis of experiments conducted over multiple years, seasons, or locations. It is designed to assess treatment interactions with environmental factors (such as location and season) using various experimental designs. The package supports pooled analysis of variance (ANOVA) for the following designs: (1) PooledCRD()': completely randomized design; (2) PooledRBD()': randomized block design; (3) PooledLSD()': Latin square design; (4) PooledSPD()': split plot design; and (5) PooledStPD()': strip plot design. Each function provides the following outputs: (i) Individual ANOVA tables based on independent analysis for each location or year; (ii) Testing of homogeneity of error variances among distinct locations using Bartlettâ s Chi-Square test; (iii) If Bartlettâ s test is significant, Aitkenâ s transformation, defined as the ratio of the response to the square root of the error mean square, is applied to the response variable; otherwise, the data is used as is; (iv) Combined analysis to obtain a pooled ANOVA table; (v) Multiple comparison tests, including Tukey's honestly significant difference (Tukey's HSD) test, Duncanâ s multiple range test (DMRT), and the least significant difference (LSD) test, for treatment comparisons. The statistical theory and steps of analysis of these designs are available in Dean et al. (2017)<doi:10.1007/978-3-319-52250-0> and Ruà z et al. (2024)<doi:10.1007/978-3-031-65575-3>. By broadening the scope of experimental conclusions, CANE enables researchers to derive robust, widely applicable recommendations. This package is particularly valuable in agricultural research, where accounting for treatment à location and treatment à season interactions is essential for ensuring the validity of findings across multiple settings.
Calculation of consensus values for atomic weights, isotope amount ratios, and isotopic abundances with the associated uncertainties using multivariate meta-regression approach for consensus building.
This package performs analysis of categorical-variable with missing values. Implements methods from Schafer, JL, Analysis of Incomplete Multivariate Data, Chapman and Hall.
This package provides methods for powering cluster-randomized trials with two continuous co-primary outcomes using five key design techniques. Includes functions for calculating required sample size and statistical power. For more details on methodology, see Owen et al. (2025) <doi:10.1002/sim.70015>, Yang et al. (2022) <doi:10.1111/biom.13692>, Pocock et al. (1987) <doi:10.2307/2531989>, Vickerstaff et al. (2019) <doi:10.1186/s12874-019-0754-4>, and Li et al. (2020) <doi:10.1111/biom.13212>.
Simple, fast, and automatic encodings for category data using a data.table backend. Most of the methods are an implementation of "Sufficient Representation for Categorical Variables" by Johannemann, Hadad, Athey, Wager (2019) <arXiv:1908.09874>, particularly their mean, sparse principal component analysis, low rank representation, and multinomial logit encodings.
This package implements higher order likelihood-based inference for logistic and loglinear models.
Analyzes and modifies metabolomics raw data (generated using Gas Chromatography-Atmospheric Pressure Chemical Ionization-Mass Spectrometry) to correct overloaded signals, i.e. ion intensities exceeding detector saturation leading to a cut-off peak. Data in xcmsRaw format are accepted as input and mzXML files can be processed alternatively. Overloaded signals are detected automatically and modified using an Gaussian or an Isotopic-Ratio approach. Quality control plots are generated and corrected data are stored within the original xcmsRaw or mzXML respectively to allow further processing.
This package provides functions to compute and plot Coverage Probability Excursion (CoPE) sets for real valued functions on a 2-dimensional domain. CoPE sets are obtained from repeated noisy observations of the function on the entire domain. They are designed to bound the excursion set of the target function at a given level from above and below with a predefined probability. The target function can be a parameter in spatially-indexed linear regression. Support by NIH grant R01 CA157528 is gratefully acknowledged.
Generate cofeature (feature by sample) matrices. The package utilizes ggplot2::geom_tile() to generate the matrix allowing for easy additions from the base matrix.
Patients Mental Health (MH) status, Substance Use (SU) status, and concurrent MH/SU status in the American/Canadian Healthcare Administrative Databases can be identified. The detection is based on given parameters of interest by clinicians including the list of plausible ICD MH/SU codes (3/4/5 characters), the required number of visits of hospital for MH/SU , the required number of visits of service physicians for MH/SU, and the maximum time span within MH visits, within SU visits, and, between MH and SU visits. Methods are described in: Khan S <https://pubmed.ncbi.nlm.nih.gov/29044442/>, Keen C, et al. (2021) <doi:10.1111/add.15580>, Lavergne MR, et al. (2022) <doi:10.1186/s12913-022-07759-z>, Casillas, S M, et al. (2022) <doi:10.1016/j.abrep.2022.100464>, CIHI (2022) <https://www.cihi.ca/en>, CDC (2024) <https://www.cdc.gov>, WHO (2019) <https://icd.who.int/en>.
Compute ranking and rating based on competition results. Methods of different nature are implemented: with fixed Head-to-Head structure, with variable Head-to-Head structure and with iterative nature. All algorithms are taken from the book Whoâ s #1?: The science of rating and ranking by Amy N. Langville and Carl D. Meyer (2012, ISBN:978-0-691-15422-0).
Client for CKAN API (<https://ckan.org/>). Includes interface to CKAN APIs for search, list, show for packages, organizations, and resources. In addition, provides an interface to the datastore API.
Estimation and inference methods for the continuous threshold expectile regression. It can fit the continuous threshold expectile regression and test the existence of change point, for the paper, "Feipeng Zhang and Qunhua Li (2016). A continuous threshold expectile regression, submitted.".
This package performs the calibration procedure proposed by Sung et al. (2018+) <arXiv:1806.01453>. This calibration method is particularly useful when the outputs of both computer and physical experiments are binary and the estimation for the calibration parameters is of interest.
Implementation of models to analyse compositional microbiome time series taking into account the interaction between groups of bacteria. The models implemented are described in Creus-Martà et al (2018, ISBN:978-84-09-07541-6), Creus-Martà et al (2021) <doi:10.1155/2021/9951817> and Creus-Martà et al (2022) <doi:10.1155/2022/4907527>.
Evaluates predictive performance under feature-level missingness in repeated-measures continuous glucose monitoring-like data. The benchmark injects missing values at user-specified rates, imputes incomplete feature matrices using an iterative chained-equations approach inspired by multivariate imputation by chained equations (MICE; Azur et al. (2011) <doi:10.1002/mpr.329>), fits Random Forest regression models (Breiman (2001) <doi:10.1023/A:1010933404324>) and k-nearest-neighbor regression models (Zhang (2016) <doi:10.21037/atm.2016.03.37>), and reports mean absolute percentage error and R-squared across missingness rates.