Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Use frequentist and Bayesian methods to estimate parameters from a binary outcome misclassification model. These methods correct for the problem of "label switching" by assuming that the sum of outcome sensitivity and specificity is at least 1. A description of the analysis methods is available in Hochstedler and Wells (2023) <doi:10.48550/arXiv.2303.10215>.
Contrast trees represent a new approach for assessing the accuracy of many types of machine learning estimates that are not amenable to standard (cross) validation methods; see "Contrast trees and distribution boosting", Jerome H. Friedman (2020) <doi:10.1073/pnas.1921562117>. In situations where inaccuracies are detected, boosted contrast trees can often improve performance. Functions are provided to to build such trees in addition to a special case, distribution boosting, an assumption free method for estimating the full probability distribution of an outcome variable given any set of joint input predictor variable values.
Covariance measure tests for conditional independence testing against conditional covariance and nonlinear conditional mean alternatives. The package implements versions of the generalised covariance measure test (Shah and Peters, 2020, <doi:10.1214/19-aos1857>) and projected covariance measure test (Lundborg et al., 2023, <doi:10.1214/24-AOS2447>). The tram-GCM test, for censored responses, is implemented including the Cox model and survival forests (Kook et al., 2024, <doi:10.1080/01621459.2024.2395588>). Application examples to variable significance testing and modality selection can be found in Kook and Lundborg (2024, <doi:10.1093/bib/bbae475>).
This package provides functions for efficient computation of non-linear spatial predictions with local change of support (Hofer, C. and Papritz, A. (2011) "constrainedKriging: An R-package for customary, constrained and covariance-matching constrained point or block kriging" <doi:10.1016/j.cageo.2011.02.009>). This package supplies functions for two-dimensional spatial interpolation by constrained (Cressie, N. (1993) "Aggregation in geostatistical problems" <doi:10.1007/978-94-011-1739-5_3>), covariance-matching constrained (Aldworth, J. and Cressie, N. (2003) "Prediction of nonlinear spatial functionals" <doi:10.1016/S0378-3758(02)00321-X>) and universal (external drift) Kriging for points or blocks of any shape from data with a non-stationary mean function and an isotropic weakly stationary covariance function. The linear spatial interpolation methods, constrained and covariance-matching constrained Kriging, provide approximately unbiased prediction for non-linear target values under change of support. This package extends the range of tools for spatial predictions available in R and provides an alternative to conditional simulation for non-linear spatial prediction problems with local change of support.
Collects several different methods for analyzing and working with connectivity data in R. Though primarily oriented towards marine larval dispersal, many of the methods are general and useful for terrestrial systems as well.
An efficient cross-validated approach for covariance matrix estimation, particularly useful in high-dimensional settings. This method relies upon the theory of high-dimensional loss-based covariance matrix estimator selection developed by Boileau et al. (2022) <doi:10.1080/10618600.2022.2110883> to identify the optimal estimator from among a prespecified set of candidates.
Color and visualize wildlife distributions in space-time using raster data. In addition to enabling display of sequential change in distributions through the use of small multiples, colorist provides functions for extracting several features of interest from a sequence of distributions and for visualizing those features using HCL (hue-chroma-luminance) color palettes. Resulting maps allow for "fair" visual comparison of intensity values (e.g., occurrence, abundance, or density) across space and time and can be used to address questions about where, when, and how consistently a species, group, or individual is likely to be found.
The cgAUC can calculate the AUC-type measure of Obuchowski(2006) when gold standard is continuous, and find the optimal linear combination of variables with respect to this measure.
This package provides a workflow to generate and analyze signatures based on copy number data using non-negative matrix factorization (NMF) in an approach similar to that used in mutational signatures. It can be used to extract features from Copy number segment data and use that to find a subset of copy number signatures which can be further used to correlate with other relevant data. For more on NMF see Gaujoux (2013) <doi:10.1186/1471-2105-11-367>.
This package provides a collection of cardiovascular research datasets and analytical tools, including methods for cardiovascular procedural data, such as electrocardiography, echocardiography, and catheterization data. Additional methods exist for analysis of procedural billing codes.
This package provides a pair of functions for renaming and encoding data frames using external crosswalk files. It is especially useful when constructing master data sets from multiple smaller data sets that do not name or encode variables consistently across files. Based on similar commands in Stata'.
Predict Scope 1, 2 and 3 carbon emissions for UK Small and Medium-sized Enterprises (SMEs), using Standard Industrial Classification (SIC) codes and annual turnover data, as well as Scope 1 carbon emissions for UK farms. The carbonpredict package provides single and batch prediction, plotting, and workflow tools for carbon accounting and reporting. The package utilises pre-trained models, leveraging rich classified transaction data to accurately predict Scope 1, 2 and 3 carbon emissions for UK SMEs as well as identifying emissions hotspots. It also provides Scope 1 carbon emissions predictions for UK farms of types: Cereals ex. rice, Dairy, Mixed farming, Sheep and goats, Cattle & buffaloes, Poultry, Animal production and Support for crop production. The methodology used to produce the estimates in this package is fully detailed in the following peer-reviewed publications: Phillpotts, A., Owen. A., Norman, J., Trendl, A., Gathergood, J., Jobst, Norbert., Leake, D. (2025) <doi:10.1111/jiec.70106> "Bridging the SME Reporting Gap: A New Model for Predicting Scope 1 and 2 Emissions" and Wells, J., Trendl, A., Owen, A., Barrett, J., Gridley, J., Jobst, N., Leake, D. (2025) <doi:10.1088/1748-9326/ae20ab> "A Scalable Tool for Farm-Level Carbon Accounting: Evidence from UK Agriculture".
Curates biological sequences massively, quickly, without errors and without internet connection. Biological sequences curing is performed by aligning the forward and / or revers primers or ends of cloning vectors with the sequences to be cleaned. After the alignment, new subsequences are generated without biological fragment not desired by the user. Pozzi et al (2020) <doi:10.1007/s00438-020-01671-z>.
Create, query, and modify causal graphs. caugi (Causal Graph Interface) is a causality-first, high performance graph package that provides a simple interface to build, structure, and examine causal relationships.
While individual calibrated radiocarbon dates can span several centuries, combining multiple dates together with any chronological constraints can make a chronology much more robust and precise. This package uses Bayesian methods to enforce the chronological ordering of radiocarbon and other dates, for example for trees with multiple radiocarbon dates spaced at exactly known intervals (e.g., 10 annual rings). For methods see Christen 2003 <doi:10.11141/ia.13.2>. Another example is sites where the relative chronological position of the dates is taken into account - the ages of dates further down a site must be older than those of dates further up (Buck, Kenworthy, Litton and Smith 1991 <doi:10.1017/S0003598X00080534>; Nicholls and Jones 2001 <doi:10.1111/1467-9876.00250>). The paper accompanying this R package is Blaauw et al. 2024 <doi:10.1017/RDC.2024.56>.
This package provides a simple runner for fuzz-testing functions in an R package's public interface. Fuzz testing helps identify functions lacking sufficient argument validation, and uncovers problematic inputs that, while valid by function signature, may cause issues within the function body.
This package provides methods for the import/export and automated analysis of concept maps and concept landscapes (sets of concept maps).
In computer experiments space-filling designs are having great impact. Most popularly used space-filling designs are Uniform designs (UDs), Latin hypercube designs (LHDs) etc. For further references one can see Mckay (1979) <DOI:10.1080/00401706.1979.10489755> and Fang (1980) <https://cir.nii.ac.jp/crid/1570291225616774784>. In this package, we have provided algorithms for generate efficient LHDs and UDs. Here, generated LHDs are efficient as they possess lower value of Maxpro measure, Phi_p value and Maximum Absolute Correlation (MAC) value based on the weightage given to each criterion. On the other hand, the produced UDs are having good space-filling property as they always attain the lower bound of Discrete Discrepancy measure. Further, some useful functions added in this package for adding more value to this package.
This package contains all of the functions necessary for the complete analysis of a continuous glucose monitoring study and can be applied to data measured by various existing CGM devices such as FreeStyle Libre', Glutalor', Dexcom and Medtronic CGM'. It reads a series of data files, is able to convert various formats of time stamps, can deal with missing values, calculates both regular statistics and nonlinear statistics, and conducts group comparison. It also displays results in a concise format. Also contains two unique features new to CGM analysis: one is the implementation of strictly standard mean difference and the class of effect size; the other is the development of a new type of plot called antenna plot. It corresponds to Zhang XD'(2018)<doi:10.1093/bioinformatics/btx826>'s article CGManalyzer: an R package for analyzing continuous glucose monitoring studies'.
Use the US Census API to collect summary data tables for SF1 and ACS datasets at arbitrary geographies.
Utility functions for the statistical analysis of corpus frequency data. This package is a companion to the open-source course "Statistical Inference: A Gentle Introduction for Computational Linguists and Similar Creatures" ('SIGIL').
Deal with packages check outputs and reduce the risk of rejection by CRAN by following policies.
Computes density function, cumulative distribution function, quantile function and random numbers for a multisection composite distribution specified by the user. Also fits the user specified distribution to a given data set. More details of the package can be found in the following paper submitted to the R journal Wiegand M and Nadarajah S (2017) CompDist: Multisection composite distributions.
R functions for criterion profile analysis, Davison and Davenport (2002) <doi:10.1037/1082-989X.7.4.468> and meta-analytic criterion profile analysis, Wiernik, Wilmot, Davison, and Ones (2020) <doi:10.1037/met0000305>. Sensitivity analyses to aid in interpreting criterion profile analysis results are also included.