Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Counts colors within color range(s) in images, and provides a masked version of the image with targeted pixels changed to a different color. Output includes the locations of the pixels in the images, and the proportion of the image within the target color range with optional background masking. Users can specify multiple color ranges for masking.
This creates code names that a user can consider for their organizations, their projects, themselves, people in their organizations or projects, or whatever else. The user can also supply a numeric seed (and even a character seed) for maximum reproducibility. Use is simple and the code names produced come in various types too, contingent on what the user may be desiring as a code name or nickname.
Providing more beautiful and more meaningful return messages for checkmate assertions and checks helping users to better understand errors.
Assess the calibration of an existing (i.e. previously developed) multistate model through calibration plots. Calibration is assessed using one of three methods. 1) Calibration methods for binary logistic regression models applied at a fixed time point in conjunction with inverse probability of censoring weights. 2) Calibration methods for multinomial logistic regression models applied at a fixed time point in conjunction with inverse probability of censoring weights. 3) Pseudo-values estimated using the Aalen-Johansen estimator of observed risk. All methods are applied in conjunction with landmarking when required. These calibration plots evaluate the calibration (in a validation cohort of interest) of the transition probabilities estimated from an existing multistate model. While package development has focused on multistate models, calibration plots can be produced for any model which utilises information post baseline to update predictions (e.g. dynamic models); competing risks models; or standard single outcome survival models, where predictions can be made at any landmark time. Please see Pate et al. (2024) <doi:10.1002/sim.10094> and Pate et al. (2024) <https://alexpate30.github.io/calibmsm/articles/Overview.html>.
Composite Kernel Association Test (CKAT) is a flexible and robust kernel machine based approach to jointly test the genetic main effect and gene-treatment interaction effect for a set of single-nucleotide polymorphisms (SNPs) in pharmacogenetics (PGx) assessments embedded within randomized clinical trials.
Allows users to identify similar cases for qualitative case studies using statistical matching methods.
Functions, data and code for Hilbe, J.M. 2011. Negative Binomial Regression, 2nd Edition (Cambridge University Press) and Hilbe, J.M. 2014. Modeling Count Data (Cambridge University Press).
Git hook scripts are useful for identifying simple issues before submission to code review. captain (hook) is an R package to manage and run git pre-commit hooks.
This package implements the covariate balancing propensity score (CBPS) proposed by Imai and Ratkovic (2014) <DOI:10.1111/rssb.12027>. The propensity score is estimated such that it maximizes the resulting covariate balance as well as the prediction of treatment assignment. The method, therefore, avoids an iteration between model fitting and balance checking. The package also implements optimal CBPS from Fan et al. (in-press) <DOI:10.1080/07350015.2021.2002159>, several extensions of the CBPS beyond the cross-sectional, binary treatment setting. They include the CBPS for longitudinal settings so that it can be used in conjunction with marginal structural models from Imai and Ratkovic (2015) <DOI:10.1080/01621459.2014.956872>, treatments with three- and four-valued treatment variables, continuous-valued treatments from Fong, Hazlett, and Imai (2018) <DOI:10.1214/17-AOAS1101>, propensity score estimation with a large number of covariates from Ning, Peng, and Imai (2020) <DOI:10.1093/biomet/asaa020>, and the situation with multiple distinct binary treatments administered simultaneously. In the future it will be extended to other settings including the generalization of experimental and instrumental variable estimates.
This package provides a versatile R package for creating and pricing custom derivatives to suit your financial needs.
Helps create alerts and determine trends by using various methods to analyze public health surveillance data. The primary analysis method is based upon a published analytics strategy by Benedetti (2019) <doi:10.5588/pha.19.0002>.
Conditional distance correlation <doi:10.1080/01621459.2014.993081> is a novel conditional dependence measurement of two multivariate random variables given a confounding variable. This package provides conditional distance correlation, performs the conditional distance correlation sure independence screening procedure for ultrahigh dimensional data <https://www3.stat.sinica.edu.tw/statistica/J28N1/J28N114/J28N114.html>, and conducts conditional distance covariance test for conditional independence assumption of two multivariate variable.
The cystiSim package provides an agent-based model for Taenia solium transmission and control. cystiSim was developed within the framework of CYSTINET, the European Network on taeniosis/cysticercosis, COST ACTION TD1302.
Fit flexible and fully parametric hazard regression models to survival data with single event type or multiple competing causes via logistic and multinomial regression. Our formulation allows for arbitrary functional forms of time and its interactions with other predictors for time-dependent hazards and hazard ratios. From the fitted hazard model, we provide functions to readily calculate and plot cumulative incidence and survival curves for a given covariate profile. This approach accommodates any log-linear hazard function of prognostic time, treatment, and covariates, and readily allows for non-proportionality. We also provide a plot method for visualizing incidence density via population time plots. Based on the case-base sampling approach of Hanley and Miettinen (2009) <DOI:10.2202/1557-4679.1125>, Saarela and Arjas (2015) <DOI:10.1111/sjos.12125>, and Saarela (2015) <DOI:10.1007/s10985-015-9352-x>.
This package provides access to consolidated information from the Brazilian Federal Government Payment Card. Includes functions to retrieve, clean, and organize data directly from the Transparency Portal <https://portaldatransparencia.gov.br/download-de-dados/cpgf/> and a curated dataset hosted on the Open Science Framework <https://osf.io/z2mxc/>. Useful for public spending analysis, transparency research, and reproducible workflows in auditing or investigative journalism.
Allows users to seamlessly query several CDC PLACES APIs (<https://data.cdc.gov/browse?q=PLACES%20&sortBy=relevance>) by geography, state, measure, and release year. This package also contains a function to explore the available measures for each release year.
Balance sheet and income statement metrics, investment analysis methods, valuation methods, loan amortization schedules, and Capital Asset Pricing Model.
Weekly notified dengue cases and climate variables in Colombo district Sri Lanka from 2008/ week-52 to 2014/ week-21.
An exact and a variational inference for coupled Hidden Markov Models applied to the joint detection of copy number variations.
This package performs regression analysis for longitudinal count data, allowing for serial dependence among observations from a given individual and two dimensional random effects on the linear predictor. Estimation is via maximization of the exact likelihood of a suitably defined model. Missing values and unbalanced data are allowed. Details can be found in the accompanying scientific papers: Goncalves & Cabral (2021, Journal of Statistical Software, <doi:10.18637/jss.v099.i03>) and Goncalves et al. (2007, Computational Statistics & Data Analysis, <doi:10.1016/j.csda.2007.03.002>).
This package provides tools for detecting cellwise outliers and robust methods to analyze data which may contain them. Contains the implementation of the algorithms described in Rousseeuw and Van den Bossche (2018) <doi:10.1080/00401706.2017.1340909> (open access) Hubert et al. (2019) <doi:10.1080/00401706.2018.1562989> (open access), Raymaekers and Rousseeuw (2021) <doi:10.1080/00401706.2019.1677270> (open access), Raymaekers and Rousseeuw (2021) <doi:10.1007/s10994-021-05960-5> (open access), Raymaekers and Rousseeuw (2021) <doi:10.52933/jdssv.v1i3.18> (open access), Raymaekers and Rousseeuw (2022) <doi:10.1080/01621459.2023.2267777> (open access) Rousseeuw (2022) <doi:10.1016/j.ecosta.2023.01.007> (open access). Examples can be found in the vignettes: "DDC_examples", "MacroPCA_examples", "wrap_examples", "transfo_examples", "DI_examples", "cellMCD_examples" , "Correspondence_analysis_examples", and "cellwise_weights_examples".
Estimate coefficients of Cox proportional hazards model using stochastic gradient descent algorithm for batch data.
Colorful Data Frames in the terminal. The new class does change the behaviour of any of the objects, but adds a style definition and a print method. Using ANSI escape codes, it colors the terminal output of data frames. Some column types (such as p-values and identifiers) are automatically recognized.
Estimation of sparse nonlinear functions in nonparametric regression using component selection and smoothing. Designed for the analysis of high-dimensional data, the models support various data types, including exponential family models and Cox proportional hazards models. The methodology is based on Lin and Zhang (2006) <doi:10.1214/009053606000000722>.