Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The congeneric normal-ogive model is a popular model for psychometric data (McDonald, R. P. (1997) <doi:10.1007/978-1-4757-2691-6_15>). This model estimates the model, calculates theoretical and concrete reliability coefficients, and predicts the latent variable of the model. This is the companion package to Moss (2020) <doi:10.31234/osf.io/nvg5d>.
This package provides a daily summary of COVID-19 cases, deaths, recovered, tests, vaccinations, and hospitalizations for 230+ countries, 760+ regions, and 12000+ administrative divisions of lower level. Includes policy measures, mobility data, and geospatial identifiers. Data source: COVID-19 Data Hub <https://covid19datahub.io>.
Create and manipulate study cohorts in data mapped to the Observational Medical Outcomes Partnership Common Data Model.
This package provides a function that performs the adaptive mean shift algorithm for individual tree crown delineation in 3D point clouds as proposed by Ferraz et al. (2016) <doi:10.1016/j.rse.2016.05.028>, as well as supporting functions.
An interactive document on the topic of classification tree analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://kartikeyab.shinyapps.io/CTShiny/>.
This package provides a collection of functions that have been developed to assist experimenter in modeling chemical degradation kinetic data. The selection of the appropriate degradation model and parameter estimation is carried out automatically as far as possible and is driven by a rigorous statistical interpretation of the results. The package integrates already available goodness-of-fit statistics for nonlinear models. In addition it allows data fitting with the nonlinear first-order multi-target (FOMT) model.
This package implements cross-validation methods for linear and ridge regression models. The package provides grid-based selection of the ridge penalty parameter using Singular Value Decomposition (SVD) and supports K-fold cross-validation, Leave-One-Out Cross-Validation (LOOCV), and Generalized Cross-Validation (GCV). Computations are implemented in C++ via RcppArmadillo with optional parallelization using RcppParallel'. The methods are suitable for high-dimensional settings where the number of predictors exceeds the number of observations.
Quantifies and assesses the significance of convergent evolution using multiple methods and measures as described in Stayton (2015) <DOI: 10.1111/evo.12729> and Grossnickle et al. 2023. Also displays results in various ways.
Enrichment strategies play a critical role in modern clinical trial design, especially as precision medicine advances the focus on patient-specific efficacy. Recent developments in enrichment design have introduced biomarker randomness and accounted for the correlation structure between treatment effect and biomarker, resulting in a two-stage threshold enrichment design. We propose novel two-stage enrichment designs capable of handling two or more continuous biomarkers. See Zhang, F. and Gou, J. (2025). Using multiple biomarkers for patient enrichment in two-stage clinical designs. Technical Report.
This package provides a graphical user interface for simulating the effects of mergers, tariffs, and quotas under an assortment of different economic models. The interface is powered by the Shiny web application framework from RStudio'.
This package provides useful tools for cognitive diagnosis modeling (CDM). The package includes functions for empirical Q-matrix estimation and validation, such as the Hull method (Nájera, Sorrel, de la Torre, & Abad, 2021, <doi:10.1111/bmsp.12228>) and the discrete factor loading method (Wang, Song, & Ding, 2018, <doi:10.1007/978-3-319-77249-3_29>). It also contains dimensionality assessment procedures for CDM, including parallel analysis and automated fit comparison as explored in Nájera, Abad, and Sorrel (2021, <doi:10.3389/fpsyg.2021.614470>). Other relevant methods and features for CDM applications, such as the restricted DINA model (Nájera et al., 2023; <doi:10.3102/10769986231158829>), the general nonparametric classification method (Chiu et al., 2018; <doi:10.1007/s11336-017-9595-4>), and corrected estimation of the classification accuracy via multiple imputation (Kreitchmann et al., 2022; <doi:10.3758/s13428-022-01967-5>) are also available. Lastly, the package provides some useful functions for CDM simulation studies, such as random Q-matrix generation and detection of complete/identified Q-matrices.
Compute price indices using various Hedonic and multilateral methods, including Laspeyres, Paasche, Fisher, and HMTS (Hedonic Multilateral Time series re-estimation with splicing). The central function calculate_price_index() offers a unified interface for running these methods on structured datasets. This package is designed to support index construction workflows for real estate and other domains where quality-adjusted price comparisons over time are essential. The development of this package was funded by Eurostat and Statistics Netherlands (CBS), and carried out by Statistics Netherlands. The HMTS method implemented here is described in Ishaak, Ouwehand and Remøy (2024) <doi:10.1177/0282423X241246617>. For broader methodological context, see Eurostat (2013, ISBN:978-92-79-25984-5, <doi:10.2785/34007>).
Imports PxStat data in JSON-stat format and (optionally) reshapes it into wide format. The Central Statistics Office (CSO) is the national statistical institute of Ireland and PxStat is the CSOs online database of Official Statistics. This database contains current and historical data series compiled from CSO statistical releases and is accessed at <https://data.cso.ie>. The CSO PxStat Application Programming Interface (API), which is accessed in this package, provides access to PxStat data in JSON-stat format at <https://data.cso.ie>. This dissemination tool allows developers machine to machine access to CSO PxStat data.
In the context of high-throughput genetic data, CoDaCoRe identifies a set of sparse biomarkers that are predictive of a response variable of interest (Gordon-Rodriguez et al., 2021) <doi:10.1093/bioinformatics/btab645>. More generally, CoDaCoRe can be applied to any regression problem where the independent variable is Compositional (CoDa), to derive a set of scale-invariant log-ratios (ILR or SLR) that are maximally associated to a dependent variable.
Chemical analysis of proteins based on their amino acid compositions. Amino acid compositions can be read from FASTA files and used to calculate chemical metrics including carbon oxidation state and stoichiometric hydration state, as described in Dick et al. (2020) <doi:10.5194/bg-17-6145-2020>. Other properties that can be calculated include protein length, grand average of hydropathy (GRAVY), isoelectric point (pI), molecular weight (MW), standard molal volume (V0), and metabolic costs (Akashi and Gojobori, 2002 <doi:10.1073/pnas.062526999>; Wagner, 2005 <doi:10.1093/molbev/msi126>; Zhang et al., 2018 <doi:10.1038/s41467-018-06461-1>). A database of amino acid compositions of human proteins derived from UniProt is provided.
This package performs analysis of complex dynamic systems with a focus on the temporal unfolding of patterns, changes, and state transitions in behavioral data. Supports both time series and sequence data and provides tools for the analysis and visualization of complexity, pattern identification, trends, regimes, sequence typology as well as early warning signals.
Fit Cox proportional hazards models containing both fixed and random effects. The random effects can have a general form, of which familial interactions (a "kinship" matrix) is a particular special case. Note that the simplest case of a mixed effects Cox model, i.e. a single random per-group intercept, is also called a "frailty" model. The approach is based on Ripatti and Palmgren, Biometrics 2002.
Genome-wide association studies (GWAS) have been widely used for identifying common variants associated with complex diseases. Due to the small effect sizes of common variants, the power to detect individual risk variants is generally low. Complementary to SNP-level analysis, a variety of gene-based association tests have been proposed. However, the power of existing gene-based tests is often dependent on the underlying genetic models, and it is not known a priori which test is optimal. Here we proposed COMBined Association Test (COMBAT) to incorporate strengths from multiple existing gene-based tests, including VEGAS, GATES and simpleM. Compared to individual tests, COMBAT shows higher overall performance and robustness across a wide range of genetic models. The algorithm behind this method is described in Wang et al (2017) <doi:10.1534/genetics.117.300257>.
Access chemical, hazard, bioactivity, and exposure data from the Computational Toxicology and Exposure ('CTX') APIs <https://api-ccte.epa.gov/docs/>. ccdR was developed to streamline the process of accessing the information available through the CTX APIs without requiring prior knowledge of how to use APIs. Most data is also available on the CompTox Chemical Dashboard ('CCD') <https://comptox.epa.gov/dashboard/> and other resources found at the EPA Computational Toxicology and Exposure Online Resources <https://www.epa.gov/comptox-tools>.
Estimates a lasso penalized precision matrix via the blockwise coordinate descent (BCD). This package is a simple wrapper around the popular glasso package that extends and enhances its capabilities. These enhancements include built-in cross validation and visualizations. See Friedman et al (2008) <doi:10.1093/biostatistics/kxm045> for details regarding the estimation method.
Calculates confidence intervals after variable selection using repeated data splits. The package offers methods to address the challenges of post-selection inference, ensuring more accurate confidence intervals in models involving variable selection. The two main functions are lmps', which records the different models selected across multiple data splits as well as the corresponding coefficient estimates, and cips', which takes the lmps object as input to select variables and perform inferences using two types of voting.
Computes 138 standard climate indices at monthly, seasonal and annual resolution. These indices were selected, based on their direct and significant impacts on target sectors, after a thorough review of the literature in the field of extreme weather events and natural hazards. Overall, the selected indices characterize different aspects of the frequency, intensity and duration of extreme events, and are derived from a broad set of climatic variables, including surface air temperature, precipitation, relative humidity, wind speed, cloudiness, solar radiation, and snow cover. The 138 indices have been classified as follow: Temperature based indices (42), Precipitation based indices (22), Bioclimatic indices (21), Wind-based indices (5), Aridity/ continentality indices (10), Snow-based indices (13), Cloud/radiation based indices (6), Drought indices (8), Fire indices (5), Tourism indices (5).
Canonical correlation analysis (CCA) via reduced-rank regression with support for regularization and cross-validation. Several methods for estimating CCA in high-dimensional settings are implemented. The first set of methods, cca_rrr() (and variants: cca_group_rrr() and cca_graph_rrr()), assumes that one dataset is high-dimensional and the other is low-dimensional, while the second, ecca() (for Efficient CCA) assumes that both datasets are high-dimensional. For both methods, standard l1 regularization as well as group-lasso regularization are available. cca_graph_rrr further supports total variation regularization when there is a known graph structure among the variables of the high-dimensional dataset. In this case, the loadings of the canonical directions of the high-dimensional dataset are assumed to be smooth on the graph. For more details see Donnat and Tuzhilina (2024) <doi:10.48550/arXiv.2405.19539> and Wu, Tuzhilina and Donnat (2025) <doi:10.48550/arXiv.2507.11160>.
Several functions are available for calculating the most widely used effect sizes (ES), along with their variances, confidence intervals and p-values. The output includes ES's of d (mean difference), g (unbiased estimate of d), r (correlation coefficient), z (Fisher's z), and OR (odds ratio and log odds ratio). In addition, NNT (number needed to treat), U3, CLES (Common Language Effect Size) and Cliff's Delta are computed. This package uses recommended formulas as described in The Handbook of Research Synthesis and Meta-Analysis (Cooper, Hedges, & Valentine, 2009). A free web application is available at <https://acdelre.github.io/apps/compute_es/>.