Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides some tabulated data to be be referred to in a discussion in a vignette accompanying my upcoming R package playWholeHandDriverPassParams'. In addition to that specific purpose, these may also provide data and illustrate some computational approaches that are relevant to card games like hearts or bridge.This package refers to authentic data from Gregory Stoll <https://gregstoll.com/~gregstoll/bridge/math.html>, and details of performing the probability calculations from Jeremy L. Martin <https://jlmartin.ku.edu/~jlmartin/bridge/basics.pdf>.
This package performs forward model selection, using the C-index/concordance in survival analysis models.
Fits a Causal Effect Random Forest of Interaction Tress (CERFIT) which is a modification of the Random Forest algorithm where each split is chosen to maximize subgroup treatment heterogeneity. Doing this allows it to estimate the individualized treatment effect for each observation in either randomized controlled trial (RCT) or observational data. For more information see L. Li, R. A. Levine, and J. Fan (2022) <doi:10.1002/sta4.457>.
This package performs forward and backwards stepwise regression for the Proportional subdistribution hazards model in competing risks (Fine & Gray 1999). Procedure uses AIC, BIC and BICcr as selection criteria. BICcr has a penalty of k = log(n*), where n* is the number of primary events.
One way to choose the number of principal components is via the reconstruction error. This package is designed mainly for this purpose. Graphical representation is also supported, plus some other principal component analysis related functions. References include: Jolliffe I.T. (2002). Principal Component Analysis. <doi:10.1007/b98835> and Mardia K.V., Kent J.T. and Bibby J.M. (1979). Multivariate Analysis. ISBN: 978-0124712522. London: Academic Press.
Access Cloudstor via their WebDAV API. This package can read, write, and navigate Cloudstor from R.
Connect and pull data from the CJA API, which powers CJA Workspace <https://github.com/AdobeDocs/cja-apis>. The package was developed with the analyst in mind and will continue to be developed with the guiding principles of iterative, repeatable, timely analysis. New features are actively being developed and we value your feedback and contribution to the process.
This package provides a finite mixture of Zero-Inflated Poisson (ZIP) models for analyzing criminal trajectories.
Stan based functions to estimate CAR-MM models. These models allow to estimate Generalised Linear Models with CAR (conditional autoregressive) spatial random effects for spatially and temporally misaligned data, provided a suitable Multiple Membership matrix. The main references are Gramatica, Liverani and Congdon (2023) <doi:10.1214/23-BA1370>, Petrof, Neyens, Nuyts, Nackaerts, Nemery and Faes (2020) <doi:10.1002/sim.8697> and Gramatica, Congdon and Liverani <doi:10.1111/rssc.12480>.
Statistical downscaling and bias correction of climate predictions. It includes implementations of commonly used methods such as Analogs, Linear Regression, Logistic Regression, and Bias Correction techniques, as well as interpolation functions for regridding and point-based applications. It facilitates the production of high-resolution and local-scale climate information from coarse-scale predictions, which is essential for impact analyses. The package can be applied in a wide range of sectors and studies, including agriculture, water management, energy, heatwaves, and other climate-sensitive applications. The package was developed within the framework of the European Union Horizon Europe projects Impetus4Change (101081555) and ASPECT (101081460), the Wellcome Trust supported HARMONIZE project (224694/Z/21/Z), and the Spanish national project BOREAS (PID2022-140673OA-I00). Implements the methods described in Duzenli et al. (2024) <doi:10.5194/egusphere-egu24-19420>.
This package provides tools for visualization of, and inference on, the calibration of prediction models on the cumulative domain. This provides a method for evaluating calibration of risk prediction models without having to group the data or use tuning parameters (e.g., loess bandwidth). This package implements the methodology described in Sadatsafavi and Patkau (2024) <doi:10.1002/sim.10138>. The core of the package is cumulcalib(), which takes in vectors of binary responses and predicted risks. The plot() and summary() methods are implemented for the results returned by cumulcalib().
Collects several different methods for analyzing and working with connectivity data in R. Though primarily oriented towards marine larval dispersal, many of the methods are general and useful for terrestrial systems as well.
Herramientas para el análisis de datos de COVID-19 en México. Descarga y analiza los datos para COVID-19 de la Direccion General de Epidemiologà a de México (DGE) <https://www.gob.mx/salud/documentos/datos-abiertos-152127>, la Red de Infecciones Respiratorias Agudas Graves (Red IRAG) <https://www.gits.igg.unam.mx/red-irag-dashboard/reviewHome> y la Iniciativa Global para compartir todos los datos de influenza (GISAID) <https://gisaid.org/>. English: Downloads and analyzes data of COVID-19 from the Mexican General Directorate of Epidemiology (DGE), the Network of Severe Acute Respiratory Infections (IRAG network),and the Global Initiative on Sharing All Influenza Data GISAID.
This package provides functions for implementing the novel algorithm CASCORE, which is designed to detect latent community structure in graphs with node covariates. This algorithm can handle models such as the covariate-assisted degree corrected stochastic block model (CADCSBM). CASCORE specifically addresses the disagreement between the community structure inferred from the adjacency information and the community structure inferred from the covariate information. For more detailed information, please refer to the reference paper: Yaofang Hu and Wanjie Wang (2022) <arXiv:2306.15616>. In addition to CASCORE, this package includes several classical community detection algorithms that are compared to CASCORE in our paper. These algorithms are: Spectral Clustering On Ratios-of Eigenvectors (SCORE), normalized PCA, ordinary PCA, network-based clustering, covariates-based clustering and covariate-assisted spectral clustering (CASC). By providing these additional algorithms, the package enables users to compare their performance with CASCORE in community detection tasks.
Several nonparametric estimators of autocovariance functions. Procedures for constructing their confidence regions by using bootstrap techniques. Methods to correct autocovariance estimators and several tools for analysing and comparing them. Supplementary functions, including kernel computations and discrete cosine Fourier transforms. For more details see Bilchouris and Olenko (2025) <doi:10.17713/ajs.v54i1.1975>.
Calculating crude sequence ratio, adjusted sequence ratio and confidence intervals using data mapped to the Observational Medical Outcomes Partnership Common Data Model.
This package provides a wrapper for the EZC3D library to work with C3D motion capture data.
Compute price indices using various Hedonic and multilateral methods, including Laspeyres, Paasche, Fisher, and HMTS (Hedonic Multilateral Time series re-estimation with splicing). The central function calculate_price_index() offers a unified interface for running these methods on structured datasets. This package is designed to support index construction workflows for real estate and other domains where quality-adjusted price comparisons over time are essential. The development of this package was funded by Eurostat and Statistics Netherlands (CBS), and carried out by Statistics Netherlands. The HMTS method implemented here is described in Ishaak, Ouwehand and Remøy (2024) <doi:10.1177/0282423X241246617>. For broader methodological context, see Eurostat (2013, ISBN:978-92-79-25984-5, <doi:10.2785/34007>).
Hardware-based support for CRC32C cyclic redundancy checksum function is made available for x86_64 systems with SSE2 support as well as for arm64', and detected at build-time via cmake with a software-based fallback. This functionality is exported at the C'-language level for use by other packages. CRC32C is described in RFC 3270 at <https://datatracker.ietf.org/doc/html/rfc3720> and is based on Castagnoli et al <doi:10.1109/26.231911>.
This package provides tools for measuring the compositionality of signalling systems (in particular the information-theoretic measure due to Spike (2016) <http://hdl.handle.net/1842/25930> and the Mantel test for distance matrix correlation (after Dietz 1983) <doi:10.1093/sysbio/32.1.21>), functions for computing string and meaning distance matrices as well as an implementation of the Page test for monotonicity of ranks (Page 1963) <doi:10.1080/01621459.1963.10500843> with exact p-values up to k = 22.
Logic game in the style of the early 1980s home computers that can be played in the R console. This game is inspired by Mastermind, a game that became popular in the 1970s. Can you break the code?
Implementation of a probabilistic method for biclustering adapted to overdispersed count data. It is a Gamma-Poisson Latent Block Model. It also implements two selection criteria in order to select the number of biclusters.
Provide the safe color set for color blindness, the simulator of protanopia, deuteranopia. The color sets are collected from: Wong, B. (2011) <doi:10.1038/nmeth.1618>, and <http://mkweb.bcgsc.ca/biovis2012/>. The simulations of the appearance of the colors to color-deficient viewers were based on algorithms in Vienot, F., Brettel, H. and Mollon, J.D. (1999) <doi:10.1002/(SICI)1520-6378(199908)24:4%3C243::AID-COL5%3E3.0.CO;2-3>. The cvdPlot() function to generate ggplot grobs of simulations were modified from <https://github.com/clauswilke/colorblindr>.
This package provides a comprehensive toolkit for generating continuous test norms in psychometrics and biometrics, and analyzing model fit. The package offers both distribution-free modeling using Taylor polynomials and parametric modeling using the beta-binomial and the Sinh-Arcsinh distribution. Originally developed for achievement tests, it is applicable to a wide range of mental, physical, or other test scores dependent on continuous or discrete explanatory variables. The package provides several advantages: It minimizes deviations from representativeness in subsamples, interpolates between discrete levels of explanatory variables, and significantly reduces the required sample size compared to conventional norming per age group. cNORM enables graphical and analytical evaluation of model fit, accommodates a wide range of scales including those with negative and descending values, and even supports conventional norming. It generates norm tables including confidence intervals. It also includes methods for addressing representativeness issues through Iterative Proportional Fitting. Based on Lenhard et al. (2016) <doi:10.1177/1073191116656437>, Lenhard et al. (2019) <doi:10.1371/journal.pone.0222279>, Lenhard and Lenhard (2021) <doi:10.1177/0013164420928457> and Gary et al. (2023) <doi:10.1007/s00181-023-02456-0>.