Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Utility functions for the statistical analysis of corpus frequency data. This package is a companion to the open-source course "Statistical Inference: A Gentle Introduction for Computational Linguists and Similar Creatures" ('SIGIL').
It computes full conformal, split conformal and multi-split conformal prediction regions when the response variable is multivariate (i.e. dimension is greater than one). Moreover, the package also contains plot functions to visualize the output of the full and split conformal functions. To guarantee consistency, the package structure mimics the univariate package conformalInference by Ryan Tibshirani. See Lei, Gâ sell, Rinaldo, Tibshirani, & Wasserman (2018) <doi:10.1080/01621459.2017.1307116> for full and split conformal prediction in regression, and Barber, Candès, Ramdas, & Tibshirani (2023) <doi:10.1214/23-AOS2276> for extensions beyond exchangeability.
Data analysis often requires coding, especially when data are collected through interviews, observations, or questionnaires. As a result, code counting and data preparation are essential steps in the analysis process. Analysts may need to count the codes in a text (Tokenization, counting of pre-established codes, computing the co-occurrence matrix by line) and prepare the data (e.g., min-max normalization, Z-score, robust scaling, Box-Cox transformation, and non-parametric bootstrap). For the Box-Cox transformation (Box & Cox, 1964, <https://www.jstor.org/stable/2984418>), the optimal Lambda is determined using the log-likelihood method. Non-parametric bootstrap involves randomly sampling data with replacement. Two random number generators are also integrated: a Lehmer congruential generator for uniform distribution and a Box-Muller generator for normal distribution. Package for educational purposes.
Colorful Data Frames in the terminal. The new class does change the behaviour of any of the objects, but adds a style definition and a print method. Using ANSI escape codes, it colors the terminal output of data frames. Some column types (such as p-values and identifiers) are automatically recognized.
Calculate the distance between single-arm observational studies using covariate information to remove heterogeneity in Network Meta-Analysis (NMA) of randomized clinical trials. Facilitate the inclusion of observational data in NMA, enhancing the comprehensiveness and robustness of comparative effectiveness research. Schmitz (2018) <doi:10.1186/s12874-018-0509-7>.
An R implementation of the Average Marginal Component-specific Effects (AMCE) estimator presented in Hainmueller, J., Hopkins, D., and Yamamoto T. (2014) <DOI:10.1093/pan/mpt024> Causal Inference in Conjoint Analysis: Understanding Multi-Dimensional Choices via Stated Preference Experiments. Political Analysis 22(1):1-30.
Builds the coincident profile proposed by Martinez, W and Nieto, Fabio H and Poncela, P (2016) <doi:10.1016/j.spl.2015.11.008>. This methodology studies the relationship between a couple of time series based on the the set of turning points of each time series. The coincident profile establishes if two time series are coincident, or one of them leads the second.
API Client for the Climate Hazards Center CHIRPS and CHIRTS'. The CHIRPS data is a quasi-global (50°S â 50°N) high-resolution (0.05 arc-degrees) rainfall data set, which incorporates satellite imagery and in-situ station data to create gridded rainfall time series for trend analysis and seasonal drought monitoring. CHIRTS is a quasi-global (60°S â 70°N), high-resolution data set of daily maximum and minimum temperatures. For more details on CHIRPS and CHIRTS data please visit its official home page <https://www.chc.ucsb.edu/data>.
Estimation of optimal portfolio weights as combination of simple portfolio strategies, like the tangency, global minimum variance (GMV) or naive (1/N) portfolio. It is based on a utility maximizing 8-fund rule. Popular special cases like the Kan-Zhou(2007) 2-fund and 3-fund rule or the Tu-Zhou(2011) estimator are nested.
This package provides tools for clustering high-dimensional data. In particular, it contains the methods described in <doi:10.1093/bioinformatics/btaa243>, <arXiv:2010.00950>.
This package provides a toolkit for making use of credentials mediated by Posit Connect'. It handles the details of communicating with the Connect API correctly, OAuth token caching, and refresh behaviour.
This package provides functions for calculating the conditional power for different models in survival time analysis within randomized clinical trials with two different treatments to be compared and survival as an endpoint.
Includes wrapper functions around existing functions for the analysis of categorical data and introduces functions for calculating risk differences and matched odds ratios. R currently supports a wide variety of tools for the analysis of categorical data. However, many functions are spread across a variety of packages with differing syntax and poor compatibility with each another. prop_test() combines the functions binom.test(), prop.test() and BinomCI() into one output. prop_power() allows for power and sample size calculations for both balanced and unbalanced designs. riskdiff() is used for calculating risk differences and matched_or() is used for calculating matched odds ratios. For further information on methods used that are not documented in other packages see Nathan Mantel and William Haenszel (1959) <doi:10.1093/jnci/22.4.719> and Alan Agresti (2002) <ISBN:0-471-36093-7>.
Evaluates the stability and significance of clusters on igraph graphs. Supports weighted and unweighted graphs. Implements the cluster evaluation methods defined by Arratia A, Renedo M (2021) <doi:10.7717/peerj-cs.600>. Also includes an implementation of the Reduced Mutual Information introduced by Newman et al. (2020) <doi:10.1103/PhysRevE.101.042304>.
The cmgnd implements the constrained mixture of generalized normal distributions model, a flexible statistical framework for modelling univariate data exhibiting non-normal features such as skewness, multi-modality, and heavy tails. By imposing constraints on model parameters, the cmgnd reduces estimation complexity while maintaining high descriptive power, offering an efficient solution in the presence of distributional irregularities. For more details see Duttilo and Gattone (2025) <doi:10.1007/s00180-025-01638-x> and Duttilo et al (2025) <doi:10.48550/arXiv.2506.03285>.
An R implementation of the algorithms described in Reingold and Dershowitz (4th ed., Cambridge University Press, 2018) <doi:10.1017/9781107415058>, allowing conversion between many different calendar systems. Cultural and religious holidays from several calendars can be calculated.
This package provides tools for analyzing performances of cricketers based on stats in ESPN Cricinfo Statsguru. The toolset can be used for analysis of Tests,ODIs and Twenty20 matches of both batsmen and bowlers. The package can also be used to analyze team performances.
Germline and somatic locus data which contain the total read depth and B allele read depth using Bayesian model (Dirichlet Process) to cluster. Meanwhile, the cluster model can deal with the SNVs mutation and the CNAs mutation.
This package provides comprehensive tools for extracting and analyzing scientific content from PDF documents, including citation extraction, reference matching, text analysis, and bibliometric indicators. Supports multi-column PDF layouts, CrossRef API <https://www.crossref.org/documentation/retrieve-metadata/rest-api/> integration, and advanced citation parsing.
Includes several classifications such as International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD10), Anatomical Therapeutic Chemical (ATC) Classification, The International Classification of Diseases for Oncology (ICD-O-3), and International Classification of Primary Care (ICPC). Includes function that adds descriptive label to code value. Depending on classification following languages are available: English, Finnish, Swedish, and Latin.
General optimisation and specific tools for the parameter estimation (i.e. calibration) of complex models, including stochastic ones. It implements generic functions that can be used for fitting any type of models, especially those with non-differentiable objective functions, with the same syntax as base::optim. It supports multiple phases estimation (sequential parameter masking), constrained optimization (bounding box restrictions) and automatic parallel computation of numerical gradients. Some common maximum likelihood estimation methods and automated construction of the objective function from simulated model outputs is provided. See <https://roliveros-ramos.github.io/calibrar/> for more details.
Supporting functionality to run caret with spatial or spatial-temporal data. caret is a frequently used package for model training and prediction using machine learning. CAST includes functions to improve spatial or spatial-temporal modelling tasks using caret'. It includes the newly suggested Nearest neighbor distance matching cross-validation to estimate the performance of spatial prediction models and allows for spatial variable selection to selects suitable predictor variables in view to their contribution to the spatial model performance. CAST further includes functionality to estimate the (spatial) area of applicability of prediction models. Methods are described in Meyer et al. (2018) <doi:10.1016/j.envsoft.2017.12.001>; Meyer et al. (2019) <doi:10.1016/j.ecolmodel.2019.108815>; Meyer and Pebesma (2021) <doi:10.1111/2041-210X.13650>; Milà et al. (2022) <doi:10.1111/2041-210X.13851>; Meyer and Pebesma (2022) <doi:10.1038/s41467-022-29838-9>; Linnenbrink et al. (2023) <doi:10.5194/egusphere-2023-1308>; Schumacher et al. (2024) <doi:10.5194/egusphere-2024-2730>. The package is described in detail in Meyer et al. (2024) <doi:10.48550/arXiv.2404.06978>.
This package provides a convenient interface for making requests directly to the Civis Platform API <https://www.civisanalytics.com/platform>. Full documentation available here <https://civisanalytics.github.io/civis-r/>.
Reads demographic data from a variety of public data sources, extracting and harmonizing variables useful for the study of childfree individuals. The identification of childfree individuals and those with other family statuses uses Neal & Neal's (2024) "A Framework for Studying Adults who Neither have Nor Want Children" <doi:10.1177/10664807231198869>; A pre-print is available at <doi:10.31234/osf.io/fa89m>.