Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to construct finite-sample calibrated predictive intervals for Bayesian models, following the approach in Barber et al. (2021) <doi:10.1214/20-AOS1965>. These intervals are calculated efficiently using importance sampling for the leave-one-out residuals. By default, the intervals will also reflect the relative uncertainty in the Bayesian model, using the locally-weighted conformal methods of Lei et al. (2018) <doi:10.1080/01621459.2017.1307116>.
It uses the first-order sensitivity index to measure whether the weights assigned by the creator of the composite indicator match the actual importance of the variables. Moreover, the variance inflation factor is used to reduce the set of correlated variables. In the case of a discrepancy between the importance and the assigned weight, the script determines weights that allow adjustment of the weights to the intended impact of variables. If the optimised weights are unable to reflect the desired importance, the highly correlated variables are reduced, taking into account variance inflation factor. The final outcome of the script is the calculated value of the composite indicator based on optimal weights and a reduced set of variables, and the linear ordering of the analysed objects.
Simulates parameterized single- and double-directional stem deformations in tree point clouds derived from terrestrial or mobile laser scanning, enabling the generation of realistic synthetic datasets for training and validating machine learning models in wood defect detection, quality assessment, and precision forestry. For more details see Pires (2025) <doi:10.54612/a.7hln0kr0ta>.
This package provides a set of functions to implement the Combined Compromise Solution (CoCoSo) Method created by Yazdani, Zarate, Zavadskas and Turskis (2019) <doi:10.1108/MD-05-2017-0458>. This method is based on an integrated simple additive weighting and compromise exponentially weighted product model.
Connect to the California Irrigation Management Information System (CIMIS) Web API. See the CIMIS main page <https://cimis.water.ca.gov> and web API documentation <https://et.water.ca.gov> for more information.
This package provides a collection of tools for estimating a network from a random sample of cognitive social structure (CSS) slices. Also contains functions for evaluating a CSS in terms of various error types observed in each slice.
Copula-based regression models for multivariate censored data, including bivariate right-censored data, bivariate interval-censored data, and right/interval-censored semi-competing risks data. Currently supports Clayton, Gumbel, Frank, Joe, AMH and Copula2 copula models. For marginal models, it supports parametric (Weibull, Loglogistic, Gompertz) and semiparametric (Cox and transformation) models. Includes methods for convenient prediction and plotting. Also provides a bivariate time-to-event simulation function and an information ratio-based goodness-of-fit test for copula. Method details can be found in Sun et.al (2019) Lifetime Data Analysis, Sun et.al (2021) Biostatistics, Sun et.al (2022) Statistical Methods in Medical Research, Sun et.al (2022) Biometrics, and Sun et al. (2023+) JRSSC.
This tool performs pairwise correlation analysis and estimate causality. Particularly, it is useful for detecting the metabolites that would be altered by the gut bacteria.
This package contains the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) data set.
Surrounds the usual sample variance of a univariate numeric sample with a confidence interval for the population variance. This has been done so far only under the assumption that the underlying distribution is normal. Under the hood, this package implements the unique least-variance unbiased estimator of the variance of the sample variance, in a formula that is equivalent to estimating kurtosis and square of the population variance in an unbiased way and combining them according to the classical formula into an estimator of the variance of the sample variance. Both the sample variance and the estimator of its variance are U-statistics. By the theory of U-statistic, the resulting estimator is unique. See Fuchs, Krautenbacher (2016) <doi:10.1080/15598608.2016.1158675> and the references therein for an overview of unbiased estimation of variances of U-statistics.
Copula-based imputation methods: parametric and nonparametric algorithms for missing multivariate data through conditional copulas.
This package provides a genome-wide survival framework that integrates sequential conditional independent tuples and saddlepoint approximation method, to provide SNP-level false discovery rate control while improving power, particularly for biobank-scale survival analyses with low event rates. The method is based on model-X knockoffs as described in Barber and Candes (2015) <doi:10.1214/15-AOS1337> and fast survival analysis methods from Bi et al. (2020) <doi:10.1016/j.ajhg.2020.06.003>. A shrinkage algorithmic leveraging accelerates multiple knockoffs generation in large genetic cohorts. This CRAN version uses standard Cox regression for association testing. For enhanced performance on very large datasets, users may optionally install the SPACox package from GitHub which provides saddlepoint approximation methods for survival analysis.
Implementation of the Cluster Estimated Standard Errors (CESE) proposed in Jackson (2020) <DOI:10.1017/pan.2019.38> to compute clustered standard errors of linear coefficients in regression models with grouped data.
This package provides a self-contained set of methods to aid clinical trial safety investigators, statisticians and researchers, in the early detection of adverse events using groupings by body-system or system organ class. This work was supported by the Engineering and Physical Sciences Research Council (UK) (EPSRC) [award reference 1521741] and Frontier Science (Scotland) Ltd. The package title c212 is in reference to the original Engineering and Physical Sciences Research Council (UK) funded project which was named CASE 2/12.
This package provides functions to check whether a vector of p-values respects the assumptions of FDR (false discovery rate) control procedures and to compute adjusted p-values.
The Clinical Trials Network (CTN) of the U.S. National Institute of Drug Abuse sponsored the CTN-0094 research team to harmonize data sets from three nationally-representative clinical trials for opioid use disorder (OUD). The CTN-0094 team herein provides a coded collection of trial outcomes and endpoints used in various OUD clinical trials over the past 50 years. These coded outcome functions are used to contrast and cluster different clinical outcome functions based on daily or weekly patient urine screenings. Note that we abbreviate urine drug screen as "UDS" and urine opioid screen as "UOS". For the example data sets (based on clinical trials data harmonized by the CTN-0094 research team), UDS and UOS are largely interchangeable.
Statistical downscaling and bias correction of climate predictions. It includes implementations of commonly used methods such as Analogs, Linear Regression, Logistic Regression, and Bias Correction techniques, as well as interpolation functions for regridding and point-based applications. It facilitates the production of high-resolution and local-scale climate information from coarse-scale predictions, which is essential for impact analyses. The package can be applied in a wide range of sectors and studies, including agriculture, water management, energy, heatwaves, and other climate-sensitive applications. The package was developed within the framework of the European Union Horizon Europe projects Impetus4Change (101081555) and ASPECT (101081460), the Wellcome Trust supported HARMONIZE project (224694/Z/21/Z), and the Spanish national project BOREAS (PID2022-140673OA-I00). Implements the methods described in Duzenli et al. (2024) <doi:10.5194/egusphere-egu24-19420>.
Fitting and inference functions for generalized linear models with constrained coefficients.
Computes confidence intervals for the positive predictive value (PPV) and negative predictive value (NPV) based on varied scenarios. In situations where the proportion of diseased subjects does not correspond to the disease prevalence (e.g. case-control studies), this package provides two types of solutions: 1) five methods for estimating confidence intervals for PPV and NPV via ratio of two binomial proportions including Gart & Nam (1988), Walter (1975), MOVER-J (Laud, 2017), Fieller (1954), and Bootstrap (Efron, 1979); 2) three direct methods that compute the confidence intervals including Pepe (2003), Zhou (2007), and Delta. In prospective studies where the proportion of diseased subjects is an unbiased estimate of the disease prevalence, this package provides several methods for calculating the confidence intervals for PPV and NPV including Clopper-Pearson, Wald, Wilson, Agresti-Coull, and Beta. See the Details and References sections in the corresponding functions.
Load Current Population Survey (CPS) microdata into R using the Census Bureau Data API (<https://www.census.gov/data/developers/data-sets.html>), including basic monthly CPS and CPS ASEC microdata.
Uses non-linear regression to statistically compare two circadian rhythms. Groups are only compared if both are rhythmic (amplitude is non-zero). Performs analyses regarding mesor, phase, and amplitude, reporting on estimates and statistical differences, for each, between groups. Details can be found in Parsons et al (2020) <doi:10.1093/bioinformatics/btz730>.
Maximum likelihood estimation of the Cauchy-Cacoullos (discrete Cauchy) distribution. Probability mass, distribution and quantile function are also included. The reference paper is: Papadatos N. (2022). "The Characteristic Function of the Discrete Cauchy Distribution in Memory of T. Cacoullos". Journal of Statistical Theory Practice, 16(3): 47. <doi:10.1007/s42519-022-00268-6>.
This package provides classes (S4) of commonly used elliptical, Archimedean, extreme-value and other copula families, as well as their rotations, mixtures and asymmetrizations. Nested Archimedean copulas, related tools and special functions. Methods for density, distribution, random number generation, bivariate dependence measures, Rosenblatt transform, Kendall distribution function, perspective and contour plots. Fitting of copula models with potentially partly fixed parameters, including standard errors. Serial independence tests, copula specification tests (independence, exchangeability, radial symmetry, extreme-value dependence, goodness-of-fit) and model selection based on cross-validation. Empirical copula, smoothed versions, and non-parametric estimators of the Pickands dependence function.
Check digits are used like file hashes to verify that a number has been transcribed accurately. The functions provided by this package help to calculate and verify check digits according to various algorithms.