Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Solves control systems problems relating to time/frequency response, LTI systems design and analysis, transfer function manipulations, and system conversion.
When taking online surveys, participants sometimes respond to items without regard to their content. These types of responses, referred to as careless or insufficient effort responding, constitute significant problems for data quality, leading to distortions in data analysis and hypothesis testing, such as spurious correlations. The R package careless provides solutions designed to detect such careless / insufficient effort responses by allowing easy calculation of indices proposed in the literature. It currently supports the calculation of longstring, even-odd consistency, psychometric synonyms/antonyms, Mahalanobis distance, and intra-individual response variability (also termed inter-item standard deviation). For a review of these methods, see Curran (2016) <doi:10.1016/j.jesp.2015.07.006>.
Clustering method to cluster both effects curves, through quantile regression coefficient modeling, and curves in functional data analysis. Sottile G. and Adelfio G. (2019) <doi:10.1007/s00180-018-0817-8>.
This package provides functions to carry out the most important crystallographic calculations for crystal structures made of 1d Gaussian-shaped atoms, especially useful for methods development. Main reference: E. Smith, G. Evans, J. Foadi (2017) <doi:10.1088/1361-6404/aa8188>.
This is an open-source implementation of the Congruent Matching Profile Segments (CMPS) method (Chen et al. 2019)<doi:10.1016/j.forsciint.2019.109964>. In general, it can be used for objective comparison of striated tool marks, and in our examples, we specifically use it for bullet signatures comparisons. The CMPS score is expected to be large if two signatures are similar. So it can also be considered as a feature that measures the similarity of two bullet signatures.
We provide a toolbox to fit a continuous-time fractionally integrated ARMA process (CARFIMA) on univariate and irregularly spaced time series data via both frequentist and Bayesian machinery. A general-order CARFIMA(p, H, q) model for p>q is specified in Tsai and Chan (2005) <doi:10.1111/j.1467-9868.2005.00522.x> and it involves p+q+2 unknown model parameters, i.e., p AR parameters, q MA parameters, Hurst parameter H, and process uncertainty (standard deviation) sigma. Also, the model can account for heteroscedastic measurement errors, if the information about measurement error standard deviations is known. The package produces their maximum likelihood estimates and asymptotic uncertainties using a global optimizer called the differential evolution algorithm. It also produces posterior samples of the model parameters via Metropolis-Hastings within a Gibbs sampler equipped with adaptive Markov chain Monte Carlo. These fitting procedures, however, may produce numerical errors if p>2. The toolbox also contains a function to simulate discrete time series data from CARFIMA(p, H, q) process given the model parameters and observation times.
Implementing seven Covariate-Adaptive Randomization to assign patients to two treatments. Three of these procedures can also accommodate quantitative and mixed covariates. Given a set of covariates, the user can generate a single sequence of allocations or replicate the design multiple times by simulating the patients covariate profiles. At the end, an extensive assessment of the performance of the randomization procedures is provided, calculating several imbalance measures. See Baldi Antognini A, Frieri R, Zagoraiou M and Novelli M (2022) <doi:10.1007/s00362-022-01381-1> for details.
Cellular cooperation compromises the plating efficiency-based analysis of clonogenic survival data. This tool provides functions that enable a robust analysis of colony formation assay (CFA) data in presence or absence of cellular cooperation. The implemented method has been described in Brix et al. (2020). (Brix, N., Samaga, D., Hennel, R. et al. "The clonogenic assay: robustness of plating efficiency-based analysis is strongly compromised by cellular cooperation." Radiat Oncol 15, 248 (2020). <doi:10.1186/s13014-020-01697-y>) Power regression for parameter estimation, calculation of survival fractions, uncertainty analysis and plotting functions are provided.
This package provides a modeling tool allowing gene selection, reverse engineering, and prediction in cascade networks. Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014) <doi:10.1093/bioinformatics/btt705>.
Get description of images from Clarifai API. For more information, see <http://clarifai.com>. Clarifai uses a large deep learning cloud to come up with descriptive labels of the things in an image. It also provides how confident it is about each of the labels.
Model-based clustering of mixed data (i.e. data which consist of continuous, binary, ordinal or nominal variables) using a parsimonious mixture of latent Gaussian variable models.
Analysis of preprocessed dramatic texts, with respect to literary research. The package provides functions to analyze and visualize information about characters, stage directions, the dramatic structure and the text itself. The dramatic texts are expected to be in CSV format, which can be installed from within the package, sample texts are provided. The package and the reasoning behind it are described in Reiter et al. (2017) <doi:10.18420/in2017_119>.
This package provides methods for simultaneous clustering and dimensionality reduction such as: Double k-means, Reduced k-means, Factorial k-means, Clustering with Disjoint PCA but also methods for exclusively dimensionality reduction: Disjoint PCA, Disjoint FA. The statistical methods implemented refer to the following articles: de Soete G., Carroll J. (1994) "K-means clustering in a low-dimensional Euclidean space" <doi:10.1007/978-3-642-51175-2_24> ; Vichi M. (2001) "Double k-means Clustering for Simultaneous Classification of Objects and Variables" <doi:10.1007/978-3-642-59471-7_6> ; Vichi M., Kiers H.A.L. (2001) "Factorial k-means analysis for two-way data" <doi:10.1016/S0167-9473(00)00064-5> ; Vichi M., Saporta G. (2009) "Clustering and disjoint principal component analysis" <doi:10.1016/j.csda.2008.05.028> ; Vichi M. (2017) "Disjoint factor analysis with cross-loadings" <doi:10.1007/s11634-016-0263-9>.
Estimation of distributed lag models (DLMs) based on a Bayesian additive regression trees framework. Includes several extensions of DLMs: treed DLMs and distributed lag mixture models (Mork and Wilson, 2023) <doi:10.1111/biom.13568>; treed distributed lag nonlinear models (Mork and Wilson, 2022) <doi:10.1093/biostatistics/kxaa051>; heterogeneous DLMs (Mork, et. al., 2024) <doi:10.1080/01621459.2023.2258595>; monotone DLMs (Mork and Wilson, 2024) <doi:10.1214/23-BA1412>. The package also includes visualization tools and a shiny interface to check model convergence and to help interpret results.
This package implements the doubly robust distribution balancing weighting proposed by Katsumata (2024) <doi:10.1017/psrm.2024.23>, which improves the augmented inverse probability weighting (AIPW) by estimating propensity scores with estimating equations suitable for the pre-specified parameter of interest (e.g., the average treatment effects or the average treatment effects on the treated) and estimating outcome models with the estimated inverse probability weights. It also implements the covariate balancing propensity score proposed by Imai and Ratkovic (2014) <doi:10.1111/rssb.12027> and the entropy balancing weighting proposed by Hainmueller (2012) <doi:10.1093/pan/mpr025>, both of which use covariate balancing conditions in propensity score estimation. The point estimate of the parameter of interest and its uncertainty as well as coefficients for propensity score estimation and outcome regression are produced using the M-estimation. The same functions can be used to estimate average outcomes in missing outcome cases.
Efficient covariate-adjusted estimators of quantities that are useful for establishing the effects of treatments on ordinal outcomes.
Semi-Binary and Semi-Ternary Matrix Decomposition are performed based on Non-negative Matrix Factorization (NMF) and Singular Value Decomposition (SVD). For the details of the methods, see the reference section of GitHub README.md <https://github.com/rikenbit/dcTensor>.
Distributional instrumental variable (DIV) model for estimation of the interventional distribution of the outcome Y under a do intervention on the treatment X. Instruments, predictors and targets can be univariate or multivariate. Functionality includes estimation of the (conditional) interventional mean and quantiles, as well as sampling from the fitted (conditional) interventional distribution.
This package provides a function for plotting maps of agricultural field experiments that are laid out in grids. See Ryder (1981) <doi:10.1017/S0014479700011601>.
This package provides functions to download and treat data regarding the Brazilian Amazon region from a variety of official sources.
This package implements two out-of box classifiers presented in <doi:10.1002/env.2848> for distinguishing forest and non-forest terrain images. Under these algorithms, there are frequentist approaches: one parametric, using stable distributions, and another one- non-parametric, using the squared Mahalanobis distance. The package also contains functions for data handling and building of new classifiers as well as some test data set.
Nonparametric kernel density estimation, bandwidth selection, and other utilities for analyzing directional data. Implements the estimator in Bai, Rao and Zhao (1987) <doi:10.1016/0047-259X(88)90113-3>, the cross-validation bandwidth selectors in Hall, Watson and Cabrera (1987) <doi:10.1093/biomet/74.4.751> and the plug-in bandwidth selectors in Garcà a-Portugués (2013) <doi:10.1214/13-ejs821>.
Helper functions for descriptive tasks such as making print-friendly bivariate tables, sample size flow counts, and visualizing sample distributions. Also contains R approximations of some common SAS and Stata functions such as PROC MEANS from SAS and ladder', gladder', and pwcorr from Stata'.
Computes the ATM (Attractor Transition Matrix) structure and the tree-like structure describing the cell differentiation process (based on the Threshold Ergodic Set concept introduced by Serra and Villani), starting from the Boolean networks with synchronous updating scheme of the BoolNet R package. TESs (Threshold Ergodic Sets) are the mathematical abstractions that represent the different cell types arising during ontogenesis. TESs and the powerful model of biological differentiation based on Boolean networks to which it belongs have been firstly described in "A Dynamical Model of Genetic Networks for Cell Differentiation" Villani M, Barbieri A, Serra R (2011) A Dynamical Model of Genetic Networks for Cell Differentiation. PLOS ONE 6(3): e17703.