Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a simple way of fitting detection functions to distance sampling data for both line and point transects. Adjustment term selection, left and right truncation as well as monotonicity constraints and binning are supported. Abundance and density estimates can also be calculated (via a Horvitz-Thompson-like estimator) if survey area information is provided. See Miller et al. (2019) <doi:10.18637/jss.v089.i01> for more information on methods and <https://distancesampling.org/resources/vignettes.html> for example analyses.
An efficient and convenient set of functions to perform differential network estimation through the use of alternating direction method of multipliers optimization with a variety of loss functions.
This package implements a system of linear equations to recover unreported diagnostic test accuracy cell counts from commonly reported measures such as sensitivity, specificity, predictive values, prevalence, and sample size. The package is intended for applied researchers who require complete 2x2 table counts for downstream analyses.
We consider a multiple testing procedure used in many modern applications which is the q-value method proposed by Storey and Tibshirani (2003), <doi:10.1073/pnas.1530509100>. The q-value method is based on the false discovery rate (FDR), hence versions of the q-value method can be defined depending on which estimator of the proportion of true null hypotheses, p0, is plugged in the FDR estimator. We implement the q-value method based on two classical pi0 estimators, and furthermore, we propose and implement three versions of the q-value method for homogeneous discrete uniform P-values based on pi0 estimators which take into account the discrete distribution of the P-values.
The Discrete Transmuted Generalized Inverse Weibull (DTGIW) distribution is a new distribution for count data analysis. The DTGIW is discrete distribution based on Atchanut and Sirinapa (2021). <DOI: 10.14456/sjst-psu.2021.149>.
Plan optimal sample size allocation and go/no-go decision rules for phase II/III drug development programs with time-to-event, binary or normally distributed endpoints when assuming fixed treatment effects or a prior distribution for the treatment effect, using methods from Kirchner et al. (2016) <doi:10.1002/sim.6624> and Preussler (2020). Optimal is in the sense of maximal expected utility, where the utility is a function taking into account the expected cost and benefit of the program. It is possible to extend to more complex settings with bias correction (Preussler S et al. (2020) <doi:10.1186/s12874-020-01093-w>), multiple phase III trials (Preussler et al. (2019) <doi:10.1002/bimj.201700241>), multi-arm trials (Preussler et al. (2019) <doi:10.1080/19466315.2019.1702092>), and multiple endpoints (Kieser et al. (2018) <doi:10.1002/pst.1861>).
Deconvolving cell types from high-throughput gene profiling data. For more information on dtangle see Hunt et al. (2019) <doi:10.1093/bioinformatics/bty926>.
Bayesian Beta Regression, adapted for bounded discrete responses, commonly seen in survey responses. Estimation is done via Markov Chain Monte Carlo sampling, using a Gibbs wrapper around univariate slice sampler (Neal (2003) <DOI:10.1214/aos/1056562461>), as implemented in the R package MfUSampler (Mahani and Sharabiani (2017) <DOI: 10.18637/jss.v078.c01>).
This package provides a metapackage that brings together a curated collection of R packages containing domain-specific datasets. It includes time series data, educational metrics, crime records, medical datasets, and oncology research data. Designed to provide researchers, analysts, educators, and data scientists with centralized access to structured and well-documented datasets, this metapackage facilitates reproducible research, data exploration, and teaching applications across a wide range of domains. Included packages: - timeSeriesDataSets': Time series data from economics, finance, energy, and healthcare. - educationR': Datasets related to education, learning outcomes, and school metrics. - crimedatasets': Datasets on global and local crime and criminal behavior. - MedDataSets': Datasets related to medicine, public health, treatments, and clinical trials. - OncoDataSets': Datasets focused on cancer research, survival, genetics, and biomarkers.
The Ditwah storm began impacting Sri Lanka on 25 November 2025. Ditwah provides a collection of tidy, well-structured datasets to support storm data management, monitoring, and early warning applications in Sri Lanka. The publicly available data were converted to tidy data format for easy analysis. The package processes weather data, flood data and situation report data (families affected, etc.). The package also includes functions for analyzing river level progression and load dashboard visualizations to enhance situational awareness. This is also developed for educational purposes to support learning in data wrangling, visualization, and disaster analytics.
Supports the process of applying a cut to Standard Data Tabulation Model (SDTM), as part of the analysis of specific points in time of the data, normally as part of investigation into clinical trials. The functions support different approaches of cutting to the different domains of SDTM normally observed.
An open, multi-algorithmic pipeline for easy, fast and efficient analysis of cellular sub-populations and the molecular signatures that characterize them. The pipeline consists of four successive steps: data pre-processing, cellular clustering with pseudo-temporal ordering, defining differential expressed genes and biomarker identification. More details on Ghannoum et. al. (2021) <doi:10.3390/ijms22031399>. This package implements extensions of the work published by Ghannoum et. al. (2019) <doi:10.1101/700989>.
This package provides functions are provided that facilitate the import and analysis of SNP (single nucleotide polymorphism) and silicodart (presence/absence) data. The main focus is on data generated by DarT (Diversity Arrays Technology), however, data from other sequencing platforms can be used once SNP or related fragment presence/absence data from any source is imported. Genetic datasets are stored in a derived genlight format (package adegenet'), that allows for a very compact storage of data and metadata. Functions are available for importing and exporting of SNP and silicodart data, for reporting on and filtering on various criteria (e.g. CallRate', heterozygosity, reproducibility, maximum allele frequency). Additional functions are available for visualization (e.g. Principle Coordinate Analysis) and creating a spatial representation using maps. dartR supports also the analysis of 3rd party software package such as newhybrid', structure', NeEstimator and blast'. Since version 2.0.3 we also implemented simulation functions, that allow to forward simulate SNP dynamics under different population and evolutionary dynamics. Comprehensive tutorials and support can be found at our github repository: github.com/green-striped-gecko/dartR/. If you want to cite dartR', you find the information by typing citation('dartR') in the console.
Here, a function has been developed to generate parameters of the input designs, as well as incidence matrices. This is a general function that can be used to investigate the characterization properties of any block design.
Generate motivational quotes and Shakespearean word combinations (bardâ bits) that a user can consider for their personal projects. Each of the package functions takes two arguments, cat which default to any, and a a numeric or character seed to ensure reproducible results.
Measurement and partitioning of diversity, based on Tsallis entropy, following Marcon and Herault (2015) <doi:10.18637/jss.v067.i08>. divent provides functions to estimate alpha, beta and gamma diversity of communities, including phylogenetic and functional diversity.
Density surface modelling of line transect data. A Generalized Additive Model-based approach is used to calculate spatially-explicit estimates of animal abundance from distance sampling (also presence/absence and strip transect) data. Several utility functions are provided for model checking, plotting and variance estimation.
This package provides a collection of functions to search and download Digital Surface Model (DSM) and Light Detection and Ranging (LiDAR) data via APIs, including OpenTopography <https://portal.opentopography.org/apidocs/> and TNMAccess <https://apps.nationalmap.gov/tnmaccess/#/>, and canopy tree height data.
This package provides a set of functions for the detection of spatial clusters of disease using count data. Bootstrap is used to estimate sampling distributions of statistics.
The models of probability density functions are Gaussian or exponential distributions with polynomial correction terms. Using a maximum likelihood method, dsdp computes parameters of Gaussian or exponential distributions together with degrees of polynomials by a grid search, and coefficient of polynomials by a variant of semidefinite programming. It adopts Akaike Information Criterion for model selection. See a vignette for a tutorial and more on our Github repository <https://github.com/tsuchiya-lab/dsdp/>.
Time-varying coefficient models for interval censored and right censored survival data including 1) Bayesian Cox model with time-independent, time-varying or dynamic coefficients for right censored and interval censored data studied by Sinha et al. (1999) <doi:10.1111/j.0006-341X.1999.00585.x> and Wang et al. (2013) <doi:10.1007/s10985-013-9246-8>, 2) Spline based time-varying coefficient Cox model for right censored data proposed by Perperoglou et al. (2006) <doi:10.1016/j.cmpb.2005.11.006>, and 3) Transformation model with time-varying coefficients for right censored data using estimating equations proposed by Peng and Huang (2007) <doi:10.1093/biomet/asm058>.
Fast computation of the distance covariance dcov and distance correlation dcor'. The computation cost is only O(n log(n)) for the distance correlation (see Chaudhuri, Hu (2019) <arXiv:1810.11332> <doi:10.1016/j.csda.2019.01.016>). The functions are written entirely in C++ to speed up the computation.
This package provides a basic, clear implementation of tree-based gradient boosting designed to illustrate the core operation of boosting models. Tuning parameters (such as stochastic subsampling, modified learning rate, or regularization) are not implemented. The only adjustable parameter is the number of training rounds. If you are looking for a high performance boosting implementation with tuning parameters, consider the xgboost package.
Example datasets from the book "An Introduction to Generalised Linear Models" (Year: 2018, ISBN:9781138741515) by Dobson and Barnett.