Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Read, manipulate and write voxel spaces. Voxel spaces are read from text-based output files of the AMAPVox software. AMAPVox is a LiDAR point cloud voxelisation software that aims at estimating leaf area through several theoretical/numerical approaches. See more in the article Vincent et al. (2017) <doi:10.23708/1AJNMP> and the technical note Vincent et al. (2021) <doi:10.23708/1AJNMP>.
This package provides tools for the analysis of growth data: to extract an LMS table from a gamlss object, to calculate the standard deviation scores and its inverse, and to superpose two wormplots from different models. The package contains a some varieties of reference tables, especially for The Netherlands.
The functions defined in this program serve for implementing adaptive two-stage tests. Currently, four tests are included: Bauer and Koehne (1994), Lehmacher and Wassmer (1999), Vandemeulebroecke (2006), and the horizontal conditional error function. User-defined tests can also be implemented. Reference: Vandemeulebroecke, An investigation of two-stage tests, Statistica Sinica 2006.
Forced-choice (FC) response has gained increasing popularity and interest for its resistance to faking when well-designed (Cao & Drasgow, 2019 <doi:10.1037/apl0000414>). To established well-designed FC scales, typically each item within a block should measure different trait and have similar level of social desirability (Zhang et al., 2020 <doi:10.1177/1094428119836486>). Recent study also suggests the importance of high inter-item agreement of social desirability between items within a block (Pavlov et al., 2021 <doi:10.31234/osf.io/hmnrc>). In addition to this, FC developers may also need to maximize factor loading differences (Brown & Maydeu-Olivares, 2011 <doi:10.1177/0013164410375112>) or minimize item location differences (Cao & Drasgow, 2019 <doi:10.1037/apl0000414>) depending on scoring models. Decision of which items should be assigned to the same block, termed item pairing, is thus critical to the quality of an FC test. This pairing process is essentially an optimization process which is currently carried out manually. However, given that we often need to simultaneously meet multiple objectives, manual pairing becomes impractical or even not feasible once the number of latent traits and/or number of items per trait are relatively large. To address these problems, autoFC is developed as a practical tool for facilitating the automatic construction of FC tests (Li et al., 2022 <doi:10.1177/01466216211051726>), essentially exempting users from the burden of manual item pairing and reducing the computational costs and biases induced by simple ranking methods. Given characteristics of each item (and item responses), FC measures can be constructed either automatically based on user-defined pairing criteria and weights, or based on exact specifications of each block (i.e., blueprint; see Li et al., 2024 <doi:10.1177/10944281241229784>). Users can also generate simulated responses based on the Thurstonian Item Response Theory model (Brown & Maydeu-Olivares, 2011 <doi:10.1177/0013164410375112>) and predict trait scores of simulated/actual respondents based on an estimated model.
This package provides a summarization method to estimate allele-specific copy number signals for Affymetrix SNP microarrays using non-negative matrix factorization (NMF).
Simulation and pricing routines for rare-event options using Adaptive Multilevel Splitting and standard Monte Carlo under Black-Scholes and Heston models. Core routines are implemented in C++ via Rcpp and RcppArmadillo with lightweight R wrappers.
This package provides tools supporting multi-criteria and group decision making, including variable number of criteria, by means of aggregation operators, spread measures, fuzzy logic connectives, fusion functions, and preordered sets. Possible applications include, but are not limited to, quality management, scientometrics, software engineering, etc.
Power and associated functions useful in prospective planning and monitoring of a clinical trial when a recurrent event endpoint is to be assessed by the robust Andersen-Gill model, see Lin, Wei, Yang, and Ying (2010) <doi:10.1111/1467-9868.00259>. The equations developed in Ingel and Jahn-Eimermacher (2014) <doi:10.1002/bimj.201300090> and their consequences are employed.
This package provides a tidy framework for automatic knowledge classification and visualization. Currently, the core functionality of the framework is mainly supported by modularity-based clustering (community detection) in keyword co-occurrence network, and focuses on co-word analysis of bibliometric research. However, the designed functions in akc are general, and could be extended to solve other tasks in text mining as well.
This package provides a comprehensive system for selecting variables and weighting data to match the specifications of the American National Election Studies. The package includes methods for identifying discrepant variables, raking data, and assessing the effects of the raking algorithm. It also allows automated re-raking if target variables fall outside identified bounds and allows greater user specification than other available raking algorithms. A variety of simple weighted statistics that were previously in this package (version .55 and earlier) have been moved to the package weights.'.
For a binary classification the adjusted sensitivity and specificity are measured for a given fixed threshold. If the threshold for either sensitivity or specificity is not given, the crossing point between the sensitivity and specificity curves are returned. For bootstrap procedures, mean and CI bootstrap values of sensitivity, specificity, crossing point between specificity and specificity as well as AUC and AUCPR can be evaluated.
This package provides functions in this package fit a stratified Cox proportional hazards and a proportional subdistribution hazards model by extending Zhang et al., (2007) <doi: 10.1016/j.cmpb.2007.07.010> and Zhang et al., (2011) <doi: 10.1016/j.cmpb.2010.07.005> respectively to clustered right-censored data. The functions also provide the estimates of the cumulative baseline hazard along with their standard errors. Furthermore, the adjusted survival and cumulative incidence probabilities are also provided along with their standard errors. Finally, the estimate of cumulative incidence and survival probabilities given a vector of covariates along with their standard errors are also provided.
Using this package, you can fit a random effects model using either the hierarchical credibility model, a combination of the hierarchical credibility model with a generalized linear model or a Tweedie generalized linear mixed model. See Campo, B.D.C. and Antonio, K. (2023) <doi:10.1080/03461238.2022.2161413>.
It implemented Age-Period-Interaction Model (APC-I Model) proposed in the paper of Liying Luo and James S. Hodges in 2019. A new age-period-cohort model for describing and investigating inter-cohort differences and life course dynamics.
Utilities designed to make the analysis of field trials easier and more accessible for everyone working in plant breeding. It provides a simple and intuitive interface for conducting single and multi-environmental trial analysis, with minimal coding required. Whether you're a beginner or an experienced user, agriutilities will help you quickly and easily carry out complex analyses with confidence. With built-in functions for fitting Linear Mixed Models, agriutilities is the ideal choice for anyone who wants to save time and focus on interpreting their results. Some of the functions require the R package asreml for the ASReml software, this can be obtained upon purchase from VSN international <https://vsni.co.uk/software/asreml-r/>.
This package provides a set of functions for interacting with the DigitalOcean API <https://www.digitalocean.com/>, including creating images, destroying them, rebooting, getting details on regions, and available images.
Display air quality model output and monitoring data using scatterplots, grids, and legends.
The irregularly-spaced data are interpolated onto regular latitude-longitude grids by weighting each station according to its distance and angle from the center of a search radius. In addition to this, we also provide a simple way (Jones and Hulme, 1996) to grid the irregularly-spaced data points onto regular latitude-longitude grids by averaging all stations in grid-boxes.
Estimate the Å estákâ Berggren kinetic model (degradation model) from experimental data. A closed-form (analytic) solution to the degradation model is implemented as a non-linear fit, allowing for the extrapolation of the degradation of a drug product - both in time and temperature. Parametric bootstrap, with kinetic parameters drawn from the multivariate t-distribution, and analytical formulae (the delta method) are available options to calculate the confidence and prediction intervals. The results (modelling, extrapolations and statistical intervals) can be visualised with multiple plots. The examples illustrate the accelerated stability modelling in drugs and vaccines development.
This package performs simple and canonical CA (covariates on rows/columns) on a two-way frequency table (with missings) by means of SVD. Different scaling methods (standard, centroid, Benzecri, Goodman) as well as various plots including confidence ellipsoids are provided.
This package provides functions for analysis of data generated from experiments in augmented randomised complete block design according to Federer, W.T. (1961) <doi:10.2307/2527837>. Computes analysis of variance, adjusted means, descriptive statistics, genetic variability statistics etc. Further includes data visualization and report generation functions.
Simulate population dynamics from realistically complex matrix population models in a plug-and-play fashion. Supports aspatial and spatially implicit models with one or more species and time-varying covariates, stochasticity, density dependence, additions or removals of individuals, interspecific interactions, and metapopulations.
Set of functions for analyzing Atomic Force Microscope (AFM) force-distance curves. It allows to obtain the contact and unbinding points, perform the baseline correction, estimate the Young's modulus, fit up to two exponential decay function to a stress-relaxation / creep experiment, obtain adhesion energies. These operations can be done either over a single F-d curve or over a set of F-d curves in batch mode.
Adaptive and Robust Transfer Learning (ART) is a flexible framework for transfer learning that integrates information from auxiliary data sources to improve model performance on primary tasks. It is designed to be robust against negative transfer by including the non-transfer model in the candidate pool, ensuring stable performance even when auxiliary datasets are less informative. See the paper, Wang, Wu, and Ye (2023) <doi:10.1002/sta4.582>.